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ASSESSING THE PRECISION OF TURNING POINT ESTIMATES
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� Researchers often report point estimates of turning point(s) obtained in polynomial regression
models but rarely assess the precision of these estimates. We discuss three methods to assess the
precision of such turning point estimates. The first is the delta method that leads to a normal
approximation of the distribution of the turning point estimator. The second method uses the
exact distribution of the turning point estimator of quadratic regression functions. The third
method relies on Markov chain Monte Carlo methods to provide a finite sample approximation
of the exact distribution of the turning point estimator. We argue that the delta method may
lead to misleading inference and that the other two methods are more reliable. We compare the
three methods using two data sets from the environmental Kuznets curve literature, where the
presence and location of a turning point in the income-pollution relationship is the focus of
much empirical work.

Keywords Asymmetric confidence interval; Environmental Kuznets curve hypothesis; MCMC;
Quantiles.
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1. INTRODUCTION

Economists often use polynomial regression functions to assess the
empirical evidence when economic theory predicts a nonmonotonic
relationship between two variables. For example, in testing the human
capital model of wage profiles it is common to estimate log wage
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equations that include age and its square as right-hand side variables.
Likewise, a standard hypothesis regarding voter participation is that
households at the very low and very high end of the income scale
have lower participation rates in the electoral process than middle-
income households, and regression models of voter participation include
a quadratic income term on the right-hand side. Another example,
the environmental Kuznets curve (EKC) hypothesis, posits an inverted
U-shaped relationship between income and pollution, and the standard
practice is to regress some indicator of environmental degradation,
such as emissions or deforestation, on a quadratic or cubic function of
income.

In each case, the regression model yields an estimated turning point.
It is necessary to evaluate the precision of the estimated turning point
to determine whether it is indeed representative of the data rather than
being an artifact of the polynomial functional form. However, many
authors do not assess the precision of their turning point estimate (see,
for example, Abbot and Beach, 1993; Kimhi and Rapaport, 2004; Miles,
1997; Neumark and Taubman, 1995; Tokle and Huffman, 1991, from the
labor economics and agricultural economics literature; see Greene and
Nikolaev, 1999, from the public economics literature, and Barrett and
Graddy, 2000; Ferreira, 2004; Torras and Boyce, 1998; Stern and Common,
2001, from the environmental economics literature). Others linearize the
turning point estimator and approximate its distribution using the normal
distribution (the delta method)—see, for example, Cole et al. (1997),
Grossman and Krueger (1995), Harbaugh et al. (2002), and Millimet
et al. (2003). List and Gallet (1999) mention 95 percent confidence
intervals and Co et al. (2004) report standard errors for their turning point
estimates, but neither paper includes any supporting details.

Turning point estimators for polynomial regression equations are
nonlinear functions of highly correlated random variables, and their
distributions are generally nonsymmetric. We argue that the delta method
that is commonly used to approximate these distributions with the
symmetric normal distribution is likely to lead to misleading inference. We
compare the delta method to two alternative methods: the first alternative
is based on the assumption that the errors are (asymptotically) normally
distributed and uses the exact distribution of the turning point estimator
of quadratic regression functions. The other relies on Markov chain Monte
Carlo (MCMC) techniques to provide an estimate of the exact finite
sample distribution of the turning point estimator. We discuss and evaluate
the three methods in the next section and then compare them using two
data sets from the EKC literature, where the presence and location of the
turning point in the income-pollution relationship remains the focus of
empirical work. We argue that, for these data, the two alternative methods
lead to more reliable inference than the delta method.
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2. THREE METHODS TO ASSESS THE PRECISION
OF TURNING POINT ESTIMATES IN POLYNOMIAL
REGRESSION FUNCTIONS

2.1. Quadratic Models

Quadratic regression functions are a simple and widely used approach
to estimate nonmonotonic relationships.1 Assume that the relationship
between two variables, y and x , is estimated with the quadratic equation
yi = �0 + �1xi + �2x2

i + �i , i = 1, � � � ,n, where �i is a nonsystematic
disturbance. The extremum, or turning point, �, of the equation is
� = �1/(−2�2). A commonly used estimator of � is �̂ = �̂1/(−2�̂2), where �̂1

and �̂2 are estimators of �1 and �2, respectively.2 To distinguish estimators
and estimates, we denote the point estimates of �1, �2, and � by �̂0

1, �̂
0
2,

and �̂0, respectively.

Method 1. Approximating the distribution of �̂ using a Taylor expansion
(delta method).

The generally used estimates of the moments of �̂ are based on a first-
order Taylor series expansion of �̂ around �1 and �2 (see, for example,
Greene, 2002, pp. 913–914, and also Papke and Wooldridge, 2005). This
expansion yields the approximation of �̂ as

�̂T = − �1

2�2
− 1

2�2

(
�̂1 − �1

) + �1

2(�2)2
(
�̂2 − �2

)
= − �1

2�2
− 1

2�2
�̂1 + �1

2(�2)2
�̂2

= a + b�̂1 + 2ab�̂2

≈ �̂, (1)

where a = −�1/(2�2) and b = −1/(2�2). One can therefore approximate
the mean and variance of �̂ with E(�̂T ) = a + bE(�̂1) + 2abE(�̂2) and
Var (�̂T ) = b2Var (�̂1) + (2ab)2Var (�̂2) + 4ab2Cov(�̂1�̂2), using the sample

1An alternative is to estimate different slope coefficients for the two parts of the relationship
(either as a spline function or with two separate regressions) and to test whether the slope
coefficients are different from each other. This approach restricts the regression equation by less
than a single equation polynomial regression, but unlike the polynomial regression, it requires
separate estimation of the position of the turning point.

2Alternatively, one can reparameterize the equation to obtain yi = a(xi − b)2 + c + �i , where
a = �2, b = −�1/(2�2), and c = �0 − �2

1/(4�2). Now the turning point is one of the parameters of
the model (b) that can be estimated directly, but the new equation is nonlinear in the parameters.
Millimet et al. (2003) show that this reparameterization can greatly improve the accuracy of the
estimates when the regressors can be chosen (optimal design).
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estimates �̂0
1 and �̂0

2 to determine the values of the unknown parameters
a and b.

The distributions of �̂1 and �̂2 determine the distribution of �̂T . For
example, if the estimators �̂1 and �̂2 are bivariate normally distributed,
then �̂T is normally distributed as well and the approximated 95 percent
confidence interval around the turning point estimate is symmetric.3

Method 2. Estimating the exact distribution of �̂ if �̂1 and �̂2 are bivariate
normally distributed.

If �̂1 and �̂2 are bivariate normally distributed as
N �

(
�1, �2

)T
,
((
�2
1, �

2
12

)T (
�2
12, �

2
2

)T )
�, then the joint distribution of �̂1 and

−2�̂2 is N �
(
�1,−2�2

)T
,
((
�2
1,−2�2

12

)T ( − 2�2
12, 4�

2
2

)T )
�. The cumulative

distribution function (cdf) of �̂ = �̂1/(−2�̂2), F (t), is given by (see Fieller,
1932)4

F (t) = G
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2�1�2d(t)

,
�2

�2
;
2�2t − 	�1

2�1�2d(t)

)
+ G

(−2�2t − �1

2�1�2d(t)
,−�2

�2
;
2�2t − 	�1

2�1�2d(t)

)
(2)

with

d(t) =
(
t 2

�2
1

− 	t
�1�2

+ 1
4�2

2

)
,

G(h, k; 
) = 1

2�
√
(1 − 
2)

∫ ∞

h

∫ ∞

k
exp

(
−x2 − 2
xy + y2

2(1 − 
2)

)
dx dy,

and 	 = −�2
12/(�1�2). In general, F (t) is not symmetric. Although the

bivariate normal integral in G(h, k, 
) has no closed form solution, many
computer packages make its evaluation straightforward (for example, with
the function binormal in STATA9) and we use the exact values throughout
the paper. If such programs are unavailable, then Equation (2) can be
approximated by

H (t) = �

{−2�2t − �1

2�1�2d(t)

}
± �

{
�2

�2

}
, (3)

3This result as well as the results in the following sections hold asymptotically if �̂1 and �̂2
are asymptotically normally distributed.

4Our Equation (2) differs slightly from Fieller’s equations 15–18 because we consider the
distribution of the ratio of �̂1 and −2�̂2 while Fieller considers the distribution of the ratio of �̂1
and �̂2.
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where � is the cdf of the univariate standard normal distribution (see
Hinkley, 1969) and the second term on the right-hand side has the same
sign as the expression �1/�

2
1 + 	�2/(2�2

2) (see Kotz et al., 2000, p. 328).
Given estimates of the moments of �̂1 and �̂2, it is straightforward to

use either Equations (2) or (3) to estimate quantiles of �̂ (for example, the
quantiles corresponding to the 2.5th and 97.5th percentiles that define the
standard 95 percent confidence interval). Because the distribution of �̂ is
generally not symmetric, it is inappropriate to approximate the 95 percent
confidence interval by adding and subtracting 1.96 times the estimated
standard error.

The density function of �̂ can be written as the product of a Cauchy
density and a term that contains the normal density and the normal
integral. Fieller (1932, pp. 432 and 435) and Marsaglia (1965, p. 196) show
that the moments of �̂ do not exist, which has the interesting implication
that �̂0 = �̂0

1/(−2�̂0
2) is not an accurate estimate of the turning point. If �̂1

and �̂2 are unbiased estimators of �1 and �2, then the median (the 50th
percentile) of the distribution of �̂ is a better estimate of �1/(−2�2).

When is it appropriate to use the normal approximation through
the delta method (Method 1) to assess the precision of the turning
point estimate in quadratic regression models? Shanmugalingam (1982)
provides numerical evidence that the distribution of �̂ is symmetric in
t only if 	 = CV2/CV1, where CV1 = �1/�1 and CV2 = −�2/�2 are the
coefficients of variation of �̂1 and −2�̂2. Fieller (1932) and Hinkley
(1969) show that �̂ is approximately normally distributed if CV2 is small.
Figure 1 compares the probability density function of �̂, f (t), with the
normal density function of �̂T that we obtain with the delta method
(Method 1) for the assumed values �1 = 9�9, �2 = −20, �1 = 5, �2 = 10,
and �2

12 = −49�5.5 These values imply CV1 = 0�5051, CV2 = 0�5, and 	 =
CV2/CV1 = 0�99, so that f (t) is symmetric around the turning point at x =
0�2475. The high value of 	 is typical for the correlation between the
coefficients of polynomial regression functions. The figure shows that the
exact distribution has a slimmer peak and wider tails than the normal
approximation through the delta method, so that the approximation
underestimates the true range of �̂. This should not be surprising, because
the exact distribution is related to the leptokurtic Cauchy distribution.

Figure 2 shows the two density functions for �1 = 15, with all other
parameter values being the same as before (thick lines, left-hand scale).
These values yield a turning point at x = 0�3750 and 	 = 0�99 �= CV2/CV1 =
1�5, with CV1 = 0�33 and CV2 = 0�5. Although the change is fairly minor,
the exact density function f (t) is not symmetric any more (it even has

5The density function is derived in Fieller (1932, p. 432) and (Hinkley, 1969, p. 636). For
convenience, we report it in Appendix 1.
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FIGURE 1 Comparing the normal approximation of f (t) with the exact distribution if
	=CV2/CV1 = 0�99 and CV2 = 0�5.

FIGURE 2 Comparing the normal approximation of f (t) with the exact distribution if 	 =
0�99, CV2/CV1 = 1�5, and (a) CV2 = 0�5 (thick lines, left-hand scale), (b) CV2 = 0�125 (thin lines,
right-hand scale).
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a second mode at −0�0955), and the normal approximation is clearly ill
suited to describe the properties of �̂.6

Figure 2 also shows the two density functions for a smaller value of
CV2, where �1 = 15, �2 = −20, �1 = 1�25, �2 = 2�5, and �2

12 = −3�09375,
which yields 	 = 0�99 �= CV2/CV1 = 1�5 with CV1 = 0�0833 and CV2 = 0�125
(thin lines, right-hand scale). Although the correlation coefficient 	 and
the ratio of the coefficients of variation remain unchanged compared to
the case of CV2 = 0�5, the lower value of CV2 causes the distribution of �̂
to approach the normal distribution. If CV2 decreases while CV1 remains
constant (instead of CV2/CV1 remaining constant), then f (t) approaches
the normal density function even faster.7 Whether it is appropriate to
approximate the true distribution with the delta method depends on the
values of all parameters of the joint distribution of �̂1 and �̂2, and there
are no general threshold values of CV2 and CV2/CV1 below which the delta
method is sufficiently precise. The adequacy of the delta method must
therefore be assessed on a case-by-case basis. Because it is straightforward
to evaluate the exact distribution of �̂, we conclude that there is little
reason to use the delta method to assess the precision of turning point
estimate in quadratic regression models.

Method 3. Finite sample estimate of the exact distribution of �̂ based on
MCMC output.

MCMC methods are iterative techniques that use Markov chains to
perform Monte Carlo integrations of integrals of interest. In a Bayesian
context, they are frequently used to obtain estimates of the posterior
distributions of unknown model parameters. MCMC methods generate
large numbers of samples from posterior distributions (for example, the
posterior distributions of �̂1 and �̂2) that can be used to draw inferences
about the properties of these distributions. The samples can also be
used to estimate posterior distributions of functions of correlated model
parameters, for example, the posterior distribution of �̂ = �̂1/(−2�̂2),
which provides information about the quantiles of �̂.8

The setup of MCMC methods requires assumptions about the
distribution of the data and the prior distributions of the parameters. If
the prior distributions of �̂1 and �̂2 are normal, then MCMC provides

6The second mode is barely visible in Figure 2 because f (−0�0955) = 0�01996.
7See Marsaglia (1965), Shanmugalingam (1982), and Wolgrom (2001) for additional figures

that illustrate how the distribution of the ratio of two correlated normally distributed random
variables may deviate from normality and symmetry.

8The literature on MCMC methods has grown tremendously since the early 1990s and we
refer the reader to this literature for methodological details (see, for example, Gilks et al., 1996).
MCMC has also become part of standard econometrics textbooks; see, for example, Greene (2002,
pp. 444–447).
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a numerical finite sample approximation of the exact distribution of �̂
(see Method 2) and there is no intrinsic reason to prefer MCMC over
Method 2. If the distributions of �̂1 and �̂2 are not normal, then Method 2
is not applicable while application of MCMC is often still straightforward.
In addition, MCMC works well for the assessment of turning points of
higher order polynomial functions.

2.2. Assessing Turning Points of Higher Order Polynomial
Regression Functions

Unlike Method 2, Methods 1 and 3 can be used to assess the precision
of turning points of higher order polynomial equations. If, for example,
the relationship between y and x is estimated with the cubic equation
yi = �0 + �1xi + �2x2

i + �3x3
i + �i , then the standard estimators of the two

turning points are

�̂c1,2 = −�̂2 ±
√
�̂2
2 − 3�̂1�̂3

3�̂3

, (4)

where �̂3 is the estimator of �3. Method 2 is not applicable if the numerator
is not normally distributed, which is not the case if �̂1, �̂2, and �̂3 are
trivariate normal.9 It is straightforward, however, to determine the first
order Taylor series approximations of �̂c1 and �̂c2 around the parameters �1,
�2, and �3 (see Appendix 2), and to assess the precision of the estimate
with the delta method. It is equally straightforward to use MCMC output
to obtain numerical approximations of the exact distributions of �̂c1 and �̂c2.
The higher the order of the polynomial equation, the more complex is the
algebraic Taylor series approximation of the turning point. Application of
MCMC, on the other hand, remains simple.

3. COMPARING THE THREE METHODS WITH DATA
FROM THE EKC LITERATURE

We compare the three methods by assessing the precision of turning
point estimates obtained under the EKC hypothesis. Under the EKC
hypothesis, pollution increases with income as long as income is relatively
low and decreases once income has crossed a certain threshold. Most

9Hamblen (1956) derives the distribution of the two real roots of �̂1 + 2�̂2xi + x2i = 0 (that
is, �̂3 is a constant equal to 1/3) for bivariate normal �̂1 and �̂2. This distribution is not normal
because of the need to account for the probability that the roots are complex. There does not
seem to be a simple expression of the distributions of the real roots of �̂1 + 2�̂2xi + 3�̂3x2i = 0 if
�̂1, �̂2, and �̂3 are trivariate normal, although Vom Scheidt and Bharucha-Reid (1983) derive a
normal approximation (see also Bharucha-Reid and Sambandham, 1986).
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studies have tested the EKC hypothesis with multicountry panel data sets,
assuming that there is a single global relationship between income and
pollution (for example, Grossman and Krueger, 1995; Harbaugh et al.,
2002). Because there is evidence that this relationship might differ over
time and across countries, some recent studies have analyzed a microlevel
version of the EKC hypothesis, using panel and cross-sectional data of a
single country (for example, Kahn, 1998; Khanna, 2002; List and Gallet,
1999; Millimet et al., 2003; Plassmann and Khanna, 2006). We apply our
three methods to turning point estimates obtained from multicountry as
well as single-country data.

Our first data set is the GEMS (Global Environment Monitoring
System) panel data set used by Harbaugh et al. (2002) that contains
information on ambient sulfur dioxide (SO2) concentrations in 102 cities
in 45 countries between 1971 and 1992. This is an updated version of the
data set used by Grossman and Krueger (1995) and the cornerstone of
the EKC literature. Our second data set is the one used by Plassmann and
Khanna (2006) that contains information about the number of days during
which the 1990 ambient coarse particulate matter (PM10) concentrations
exceeded their National Ambient Air Quality Standard (NAAQS) at 704
locations in the United States. We refer the reader to the original articles
for summary statistics of both data sets.

We estimate quadratic and cubic relationships between pollution and
income under the specifications reported in Harbaugh et al. (2002) and
Plassmann and Khanna (2006), using ordinary least squares (for data
set 1) and an MCMC method, the Gibbs sampler, for both data sets.
For the Gibbs sampler analyses, we assume that the distribution of the
SO2 concentrations (data set 1) is normal and that the distribution of
the numbers of days during which the concentrations of PM10 exceed
the NAAQS (data set 2) is Poisson; we further assume that the prior
distribution of the coefficients is multivariate-normal in both analyses.10

We summarize the setup of our Gibbs sampler analyses in Appendix 3. We
obtained the Gibbs sampler estimates from 10,000 runs after a burn-in of
10,000 runs for data set 1, and from 9,000 runs after a burn-in of 1,000
runs for data set 2.

It is important to emphasize that any inference of the precision
of a turning point estimate requires an adequately specified statistical

10The concentrations of PM10 remained at or below the NAAQS at 632 locations and exceeded
the NAAQS for a maximum of 8 days at only one location, so a count analysis is appropriate.
Combining the Poisson regression model with normally distributed coefficients yields the Poisson-
lognormal model. The closed form solution of the Poisson-lognormal distribution is unknown,
which makes maximum likelihood analysis of this model cumbersome, but application of MCMC
is straightforward. We describe the model selection process and report the results of alternative
analysis of these data with normal, Poisson, and negative binomial models in the supplement to
Plassmann and Khanna (2006).
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model.11 If the true relationship is of either lower or higher order
than the one estimated, then any inference based on the misspecified
model is likely to be invalid. For example, consider a linear regression
model that is erroneously estimated with a quadratic term. The turning
point �= �1/(−2�2) is not defined because the true value of �2 is zero.
Although it is of course possible to calculate a value �̂0 = �̂0

1/(−2�̂0
2) as

long as �̂0
2 �= 0, this value clearly does not represent an estimate of the

(nonexisting) turning point, and inference based on any of the three
methods discussed above is invalid. Similarly, if the true relationship
is quadratic but a cubic regression equation is estimated, then the
turning points in Equation (4) do not exist because the true value
of �3 is zero, and neither the delta method nor MCMC lead to valid
inference.

Similar problems can arise if the true relationship is of higher
order than the one estimated. For example, sometimes a straight line
approximates a cubic relationship better than a quadratic function does.
Estimating a cubic relationship with a quadratic regression function will
then either lead to an estimate of �̂2 that is (close to) zero or to a
nonzero estimate with a large standard error. In both cases, one would
conclude that there is no turning point although the true relationship is
nonlinear and may contain up to two turning points within the range of
the data.

There are various tools to guide the task of choosing the appropriate
polynomial. A simple t -test can help to choose between linear and
quadratic specifications, while an F -test (or a 
2-test for nonnormal
disturbances and large samples) helps to distinguish between higher
order polynomials. Auxiliary regressions of residuals against a function
with higher order polynomial term(s) may indicate remaining systematic
patterns. Comparison of the graphs implied by the coefficient estimates
of different polynomial functions can provide insights into the degree
of additional curvature gained at the expense of lost degrees of
freedom. As it is always the case in analyses of observational data,
there is no universal method to determine the appropriate functional
relationship, and a combination of these methods is most likely to be
successful.

3.1. Data Set 1: Harbaugh et al. (2002)

Harbaugh et al. (2002) analyze the EKC hypothesis using income and
lagged income as covariates (in addition to several nonincome variables
and fixed effects for 267 measurement sites), and they determine the

11We thank an anonymous referee for drawing our attention to this issue and to the examples.
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TABLE 1 Comparing least squares and Gibbs sampler estimates for data set 1

Quadratic specification Cubic specification

Least Gibbs Least Gibbs
squares sampler squares sampler
(1) (2) (3) (4)

Coefficient estimates

GDP −0�1165 −0�1196 −0�3025 −0�3070
(0�0518) (0�0519) (0�1286) (0�1297)

GDP 0�0054 0�0055 0�0278 0�0280
(0�0021) (0�0021) (0�0136) (0�0136)

GDP −0�0007 −0�0007
(0�0004) (0�0004)

(Lagged GDP) 0�0091 0�0092 0�3987 0�3868
(0�0524) (0�0525) (0�1270) (0�1269)

(Lagged GDP) −0�0018 −0�0019 −0�0470 −0�0462
(0�0024) (0�0024) (0�0144) (0�0144)

(Lagged GDP) 0�0015 0�0015
(0�0005) (0�0005)

Aggregate coefficients
(=GDP + Lagged GDP) −0�1074 −0�1103 0�0962 0�0799

(0�0420) (0�0410) (0�0987) (0�1007)
(=GDP2 + (Lagged GDP)) 0�0036 0�0036 −0�0192 −0�0182

(0�0017) (0�0016) (0�0087) (0�0087)
(=GDP3 + (Lagged GDP)) 0�0008 0�0008

(0�0002) (0�0003)

Turning points (at per capita GDP in $1,000)
Turning point 1 14�9654 15�3435 12�7507 12�9001
Turning point 2 3�1177 2�6516

R and test statistics
Adjusted R 0�2149 0�2197
F-test statistic and 4�88 6�31
p value 0�0077 0�0019

Estimates in parentheses are the standard errors of the coefficients. Estimates of the nonincome
covariates are not shown.

The coefficient estimates in column 3 correspond to the estimates in Table 4, column 7 in
Harbaugh et al. (2002).

The F -test statistic for the quadratic model is for the null hypothesis that the coefficients of GDP
and (lagged GDP) are zero, and the F-test statistic for the cubic model is for the null hypothesis
that the coefficients of GDP and (lagged GDP) are zero.

coefficients that enter the calculation of the turning point as sums of
the income and lagged income coefficients. Columns 1 and 2 of Table 1
show the least squares and Gibbs sampler estimates of the four income
coefficients of the quadratic specification, and columns 3 and 4 show
the estimates for the six income coefficients of the cubic specification
(the estimates in column 3 are identical to the estimates reported in
Harbaugh et al., 2002, Table 4, column 7: fixed effects model with the
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FIGURE 3 Income-pollution relationships implied by the quadratic and cubic Gibbs sampler
analyses of data set 1.

left-hand side pollution variable measured in logs).12 Although the least
squares and Gibbs sampler coefficient estimates are very similar, the small
differences lead to notable differences in the turning point estimates
that we calculated from the aggregate coefficients. The aggregation of
coefficients therefore introduces additional uncertainty into the estimate
of the turning point. Nevertheless, we use the aggregate coefficients in the
following analyses to make our results comparable to those in Harbaugh
et al. (2002).

The last row in Table 1 reports the F-test statistics and the
corresponding p-values for the hypotheses that the coefficients of the two
additional terms (GDP2 and (lagged GDP)2 for the quadratic specification
and GDP3 and (lagged GDP)3 for the cubic specification) are both zero.
Both tests indicate that the relationship between income and pollution
is nonlinear, while the second test suggests that the cubic specification
is more appropriate. Figure 3 graphs the relationships implied by the
quadratic and cubic Gibbs sampler analyses; the three vertical lines

12Harbaugh et al. (2002, p. 546) state “there is no a priori reason to prefer any one of the
specifications in [their] Table 4 to the others.” We use column 7 because (1) it yields the best fit
among the seven specifications they report, given the number of covariates included, and (2) the
sampling distributions of two of its three turning point estimators are highly skewed and illustrate
our point very well.
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indicate the range and the median of the GDP data.13 Both functional
forms track the negative relationship to the left and at the median of
the data but differ notably in their description of the relationship at the
upper and lower end of the data. We also estimated a quartic model (not
shown) whose graph is fairly similar to that of the cubic specification and
whose F-test statistic of 4.63 indicates that GDP4 and (lagged GDP)4 are
barely significant at the 10 percent level. Overall we conclude that the
cubic specification fits the data best, but that the quadratic specification
has sufficient curvature (the estimates of �2 are statistically significant at
the 10% level) to make an examination of its turning point worthwhile.

Table 2 shows the OLS and Gibbs sampler estimates of the quadratic
and cubic specifications.14 The small differences in the least squares and
Gibbs sampler point estimates of the coefficients and the elements of the
covariance matrix lead to noticeable differences in the estimates of the
density functions of �̂. We note five interesting results.

First, the point estimates of the turning points are very similar across
the three methods. For Method 1, we determined the point estimates
for the quadratic and cubic specifications as �̂0 = �̂0

1/(−2�̂0
2) and from

Equation (4), respectively. For Methods 2 and 3, we estimated the location
of the turning point as the median of the estimated density functions
(recall that the moments of �̂ do not exist if �̂1 and �̂2 are normally
distributed).

Second, Method 1 yields slightly different estimates of the empirical
standard errors of the turning points for the OLS and Gibbs sampler
estimates (especially for the cubic specification), which result from the
differences in the estimates of the covariance matrices. Method 3 yields a
very large empirical standard error for the turning point of the quadratic
specification (column 2) because the Gibbs sampler sampled several values
of �̂2 close to zero. If �̂2 is normally distributed, then its support includes
0, and values close to zero are not impossible. The fact that the Gibbs
sampler output from 10,000 runs contained 526 values of �̂2 between
−0.001 and 0.001 suggests that small values of the turning point are not as
uncommon as the Method 1 standard errors imply (note that least squares
and the Gibbs sampler yield virtually identical estimates of the standard

13Because we are interested in a comparison of shapes, we shifted the cubic function vertically
so that the two functions have identical means over the per capita GDP range [0�77, 18�10] and
ignored the presence of nonincome covariates and regional fixed effects in the equations. We
therefore do not show units on the vertical axis. An alternative is to evaluate the equations at the
medians and means of the nonincome covariates. Because this practice ignores the impact of the
fixed effects, it overstates the differences between the curves. We think that, in the presence of
such fixed effects, our method is more appropriate to assess the differences between functional
forms.

14We report the Gibbs sampler estimates for the quadratic specification to illustrate that the
Methods 2 and 3 estimates of the quantiles of �̂ (column 2) are very similar.
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FIGURE 4 Density functions of the turning point estimators for the quadratic model of data set 1.

error of �̂2). We take this large standard error of the turning point of the
quadratic specification as a further indication that the quadratic model is
misspecified and that the cubic specification is more appropriate for these
data.

Third, for the quadratic specification, the quantiles estimated with
Method 1 are very different from those estimated with Methods 2
and 3.15 This is not surprising because the ratio CV2/CV1 in column 1
is −0�4665/−0�3911 = 1�1928 (−0�4560/−0�3717 = 1�2266 in column 2),
while the correlation coefficient 	 in column 1 is 0.8682 (0.8750 in column
2). Figure 4 shows the graphs of the three density functions in column 2;
it indicates that the true distribution of the turning point is not symmetric
and that Method 1 greatly underestimates the right tail of the distribution.

Fourth, the two sets of quantiles in column 2 that we estimated with
Methods 2 and 3 are fairly similar.16 They vary from 8.67 to 8.69 at the

15The quantiles estimated with Method 2 differ slightly across columns 1 and 2 because
we aggregated the coefficients of GDP and its lags, which amplifies the small differences in the
estimates of the covariance matrix of �̂1 and �̂2.

16We determined the quantiles for Method 3 directly from the Gibbs sampler output. These
quantiles would have been even more similar to those obtained from Method 2 if we had
determined them from the smoothed histograms that we show in Figures 4 to 5. (We smoothed
the empirical density function that we obtained from the Gibbs sampler output using a normal
kernel and chose the window width (0.2) so that the Gibbs sampler density in these figures had
the most overlap with the exact density.) In Figure 2 we report the quantiles of the nonsmoothed
distribution to avoid any bias caused by the arbitrary choice of window width.
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2.5th percentile and from 36.15 to 36.51 at the 97.5th percentile. The
largest income value in data set 1 is 18.095, which is less than half of the
upper range of both 95 percent confidence intervals. (We follow Harbaugh
et al., 2002 and measure income in 1,000$.) The quadratic specification
therefore provides little evidence that the relationship between the
ambient concentrations of SO2 and GDP per capita is nonmonotonic.
Rather, the estimates suggest that the concentrations of SO2 decrease
monotonically at a decreasing rate as income increases.

Fifth, for the cubic specification, Methods 1 and 3 imply very similar
distributions for the first and very different distributions for the second
turning point estimator. Figure 5 shows the graphs of the four density
functions in column 4. A comparison of these density functions suggests
that Method 1 is appropriate for turning point 1, the trough (although
the Gibbs sampler indicates that the normal distribution somewhat
underestimates the tails), and that it greatly underestimates the left tail of
the distribution of turning point 2, the peak. It is therefore not surprising
that the two methods yield very similar estimates of the empirical standard
error of the first turning point, but that Method 1 greatly underestimates
the empirical standard error of the second turning point.

FIGURE 5 Density functions of the turning point estimators of the cubic model of data set 1.
(a) First turning point (thin lines, left-hand scale), and (b) second turning point (thick lines,
right-hand scale).
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In light of the results from the quadratic model, we take the small
confidence interval around the trough as a sign that the relationship
between concentrations of SO2 and GDP is negative until per capita
GDP reaches about $13,000 and that the concentrations of SO2 remain
fairly constant once per capita GDP exceeds this level. To determine
whether the ultimate increase in pollution is more than an artifact of the
cubic specification, it would be necessary to examine additional functional
forms.

Harbaugh et al. (2002) use Method 1 to derive standard errors for their
turning point estimates but do not assess the precision of their estimates.
Instead, they analyze several different model specifications to determine
whether their turning point estimates are robust. Our analysis of the
precision of the turning point estimates implies that the 95% confidence
intervals span almost the entire sample income range, especially in the case
of the quadratic specification. Like Harbaugh et al. (2002), we conclude
that the quadratic and cubic models provide little support for an inverted-
U shaped relationship between SO2 concentrations and national income.

3.2. Data Set 2: Plassmann and Khanna (2006)

Table 3 contains the results of quadratic and cubic Poisson-lognormal
analyses of the number of days during which the concentrations of PM10

exceeded their NAAQS. Recall that we undertake the Gibbs sampler
analysis under the assumption that the coefficients are multivariate
normally distributed so that Method 2 is applicable to our analysis.

The estimate of �2 in the quadratic specification (column 1) is
significantly different from zero at the 99% level, which suggests that the
relationship is nonlinear. The value of the 
2-test statistic for �3 = 0 in the
cubic specification (column 2) is 4.38, which exceeds the critical value at
95% but not at 99% significance. Figure 6 compares the graphs of the
two relationships and indicates that the cubic specification has greater
curvature over the data range. We conclude that there is some evidence
that the true relationship may be cubic, but that the quadratic specification
is a sufficiently close approximation to permit a meaningful analysis of its
turning point.

Our main conclusions regarding the three methods are identical to
those in the previous section, and we summarize them briefly. First, the
quantiles obtained by Methods 2 and 3 under the quadratic specification
are very similar. Second, Methods 2 and 3 suggest that the distributions of
all turning points are skewed to the right.17 Third, Method 1 overestimates
both tails of the distributions of the two peaks and greatly underestimates

17For the quadratic specification, the ratio of the coefficients of variation is 0.9012 and the
correlation coefficient is 0.9989.
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TABLE 3 Coefficient and turning point estimates of data set 2

Quadratic specification Cubic specification
(1) (2)

ln(income) (�̂0
1) 10.5741 −5.6151

(4.0140) (10.3541)
(ln(income))2 (�̂0

2) −0.5986 1.2649
(0.2048) (1.3651)

(ln(income))3 (�̂0
3) −0.0730

(0.0600)
Cov (�̂1, �̂2) −0.8211 −13.3188
Cov (�̂1, �̂3) 0.5318
Cov (�̂2, �̂3) −0.0802
Pseudo R2 0.2185 0.2238

Turning point 1 (peak) Method 1 Method 2 Method 3 Method 1 Method 3
Turning point estimate 8.8320 8.8336 8.8316 8.5621 8.6935
Finite sample standard error (0.3642) (2.6583) (0.9548) (9.9295)
Quantiles(%)
2.5 8.1202 6.8950 7.0291 6.6907 4.0089
5.0 8.2346 7.5671 7.6801 6.9915 5.7066

10.0 8.3667 8.0475 8.0722 7.3382 6.9856
50.0 8.8320 8.8336 8.8316 8.5621 8.6935
90.0 9.2981 9.1733 9.1656 9.7856 9.2346
95.0 9.4300 9.2411 9.2367 10.1323 9.3305
97.5 9.5446 9.2947 9.3018 10.4335 9.3933

Turning point 2 (trough)
Turning point estimate 2.9960 3.2061
Finite sample standard error (3.6598) (172.5259)
Quantiles (%)
2.5 −4.1735 −34.7389
5.0 −3.0217 −16.9505

10.0 −1.6929 −5.9332
50.0 2.9960 3.2074
90.0 7.6849 13.5923
95.0 9.0137 23.1000
97.5 10.1655 42.0712

Estimates in parentheses are the standard errors of the coefficients. Coefficient estimates of
nonincome variables are not shown. The turning point estimates of Methods 2 and 3 are the
medians of the density functions. Note that we measure income in logs of 1,000$. For both
specifications, we obtained the Gibbs sampler estimates from 9,000 runs after a burn-in of 1,000
runs. We determined the quantiles for Method 3 directly from the Gibbs sampler output, not from
the smoothed histograms shown in Figures 7 and 8.

the variance of the distribution of the trough of the cubic model. We
show the distributions of the two peaks implied by the three methods in
Figures 7 and 8.

Fourth, the peaks of both specifications are very close to the lower end
of the data range. The further away a turning point is from the bulk of
the data, the more likely it is an artifact of the functional relationship.
By overestimating the upper tail of the distributions, Method 1 suggests
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FIGURE 6 Income-pollution relationships implied by the quadratic and cubic analyses of data
set 2.

that the turning point may nevertheless be close to the median of the
income data (10.25), and Method 1’s 95% confidence interval for the
cubic specification even includes this median. On the basis of Method 1,
there is insufficient evidence against a turning point, and it is possible
to argue that the true relationship could be nonmonotonic. However,
the upper limits of the 95% confidence intervals of Methods 2 and 3
for both specfications are between 9.29 and 9.39, while only 6% of the
observations have a log income below 9.4. Because over 90% of the data
are to the right of the turning point and are used to estimate the curvature
of the decreasing part of the relationship (the right leg of the EKC),
it is fairly unlikely that the true relationship is nonmonotonic over the
range of our data. We conclude that the relationship most likely decreases
monotonically at an increasing rate.

4. CONCLUSION

Whether the widely used normal approximation (delta method) is
appropriate for assessing the precision of turning point estimates depends
on the characteristics of the sampling distribution of the turning point
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FIGURE 7 Density functions of the turning point estimators of the quadratic model of data set 2.

FIGURE 8 Density functions of the turning point estimator of the peak in the cubic model of
data set 2.
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estimator. Five of the six turning point estimators that we examine have
asymmetric sampling distributions, and the normal approximation leads
to misleading confidence intervals in these cases. The confidence intervals
for the turning points in the Harbaugh et al. data set are even wider
than those obtained with the normal approximation and do not support
the EKC hypothesis for SO2 concentrations and GDP per capita. For the
Plassmann and Khanna data set, the delta method implies a symmetric
95% confidence interval for the peak that includes the median of the
data under the cubic specification, while the 95% confidence intervals of
the asymmetric distributions include less than 10% of the data. The delta
method therefore leads to misleading inference.

Comparing the coefficients of variation and the correlation coefficient
of the two components of the turning point estimator in quadratic
regression functions provides some information about the symmetry
of the sampling distribution and whether the delta method might be
appropriate. However, modern computer packages make it straightforward
to determine the exact sampling distribution of the quadratic turning
point estimator, and the Gibbs sampler makes it equally straightforward
to determine a finite sample approximation of the sampling distribution
of the turning point estimators of higher order polynomial regression
functions. Given that the delta method may lead to misleading results, we
conclude that it is prudent to use either the exact sampling distribution
or the Gibbs sampler approximation for statistical inference of the turning
points of polynomial regression functions.

APPENDIX 1. THE DENSITY FUNCTION OF �̂

The probability density function (pdf) of �̂ is given by Fieller (1932,
p. 432) and Hinkley (1969, p. 636); we have adjusted the equation to show
the pdf of the ratio of �̂1 and −2�̂2 rather than the pdf of the ratio of �̂1

and �̂2:

f (t) = b(t)d(t)√
2��1�2a3(t)

[
�

(
b(t)√

1 − 	2a(t)

)
− �

(
− b(t)√

1 − 	2a(t)

)]

+
√
1 − 	2

��1�2a2(t)
exp

(
− c
2(1 − 	2)

)
, (A.1)

where

a(t) =
√

t 2

�2
1

− 	t
�1�2

+ 1
4�2

2

b(t) = �1t
�2
1

− 	(�1 − 2�2t)
2�1�2

− �2

2�2
2
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c = �2
1

�2
1

+ 	�1�2

�1�2
+ �2

2

�2
2

d(t) = exp
(
b2(t) − ca2(t)
2(1 − 	2)a2(t)

)
�

APPENDIX 2. FIRST-ORDER TAYLOR SERIES APPROXIMATION OF
EQUATION (4)

�c ,T1,2 = e + b∗�̂1 + c∗�̂2 + d∗�̂3, (A.2)

where

a = −�2 ± (
(�2)

2 − 3∗�1�3

)1/2
3�3

b = ±(
(�2)

2 − 3∗�1�3

)−1/2

2

c = ±(
(�2)

2 − 3∗�1�3

)−1/2
�̂2

3�3
− 1

3�3

d = �2 ± (
(�2)

2 − 3∗�1�3

)1/2
3(�3)2

±
(
(�2)

2 − 3∗�1�3

)−1/2
�1

2�3

e = a − b�1 − c�2 − d�3�

If �̂1, �̂2, and �̂3 are unbiased estimators of �1, �2, and �3, and trivariate
normally distributed, then �c ,T1 and �c ,T2 are normally distributed with means
E [�c ,T1,2 ] = e + bE [�̂1] + cE [�̂2] + dE [�̂3] and variances

Var (�c ,T1,2 ) = b2Var (�̂1) + c2Var (�̂2) + d2Var (�̂3) + 2bcCov(�̂1�̂2)

+ 2bdCov(�̂1�̂3) + 2cdCov(�̂2�̂3)�

APPENDIX 3. SETUP OF THE GIBBS SAMPLER ANALYSES

Implementation of the Gibbs sampler requires knowledge of the full-
conditional distributions of all parameters of interest. Such full-conditional
distributions are derived from the joint distribution of the data and
the model parameters. In both models, one needs to determine the
distributions of the parameters that describe the impact of the two (three)
income covariates, �1 and �2 (and �3 in the cubic model) and the other
covariates. The data set of Harbaugh et al. contains four other covariates,
and Plassmann and Khanna’s data set contains nine other covariates.
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1. Setup of the Gibbs Sampler for the Quadratic Normal Model

Denote the log of the ambient concentrations of particle matter by
the vector Y = (Y1, � � � ,Yn), where n is the number of observations, and
the covariates by the A × n matrix X = (X1, � � � ,Xn), where each Xi is an
A × 1 vector. We assume that Y follows an n-variate normal distribution
with density function fY (y; �,�), where � = (�1, � � � , �n), is the mean vector
with �i = Xi� and � is the covariance matrix. To simplify the example,
we assume that the Yi have identical variances �2 and are independent
of each other, so that � is a diagonal matrix with �2 on the main
diagonal. We follow the standard practice and assume that �−2 follows a
gamma distribution with density function f�(�−2; a, b). With respect to the
specification of the priors of the parameters of interest, we assume that
� follows a 12-variate normal distribution with density function f�(�; c ,�)

with mean vector c and covariance matrix �. These assumptions yield the
posterior density function

f (Y , �, � |X ) =
n∏

i=1

fYi (yi | �i , �2) · f�(�−2 | a, b) · f�(� | c ,�)� (A1)

Because we assume conditionally conjugate priors, the full-
conditional distribution of � is n-variate normal with � | · ∼ N [V −1(�−1c +
�−2XiYi),V −1)], where V −1 = �−2X T

i Xi + �−1, and the full-conditional
distribution of �−2 is gamma with �−2|· ∼ G

[
1
2(n + a), 1

2

( ∑n
i=1(Yi − Xi�)

T

(Yi − Xi�) + ab
)]
. To close the model, we set a = 0�1, b = 0�1, c = (0, � � � ,

0), � = diag (100), and �2 = 100. We used the program WinBugs (v1.3)
(available at http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml) to
generate the samples and for convergence diagnostics.

2. Setup of the Gibbs Sampler for the Poisson-Lognormal Model

Denote the number of days on which the ambient concentrations
of particle matter exceeded the NAAQS by the vector Z = (Z1, � � � ,Zn),
where n is the number of observations, and the covariates by the A × n
matrix X = (X1, � � � ,Xn), where each Xi is an A × 1 vector. We assume that
each Zi follows a Poisson distribution with density function fZ (zi ; �i), where
�i = exp(Xi�). We make the same assumptions about � as in the normal
model. These assumptions yield the posterior density function

f (Z , � |X ) =
n∏

i=1

fzi (zi | �i) · f�(� | c ,�)� (A2)
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The density function of the full-conditional distribution of � is
proportional to

g (� |Z ,X ) =
n∏

i=1

P (exp(Xi�)) · �11(c ,�), (A3)

where P is the density function of the univariate Poisson distribution and
�11 is the density function of the A-variate normal distribution. It is not
possible to relate g to a known distribution for which standard sampling
algorithms are available, and we used the Metropolis–Hastings method
described in Chib et al. (1998) to sample �. We used the program Bayesian
Output Analysis (available at http://www.public-health.uiowa.edu/boa) for
convergence diagnostics.
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