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Household Income and Pollution
Implications for the Debate About the
Environmental Kuznets Curve Hypothesis

Florenz Plassmann
Neha Khanna
State University of New York at Binghamton

Country-level analyses of global Environmental Kuznets Curve (EKC) relationships that
use multicountry panel data sets are likely to suffer from several types of aggregation bias
that may explain why previous studies have yielded conflicting results. The authors ana-
lyze 1990 cross-sectional data for the United States for three pollutants and test the gen-
eral EKC relationship as well as the pure income effect. Their results suggest that the
income level at which households reduce their exposure to pollution depends on the
nature of the pollutant. They find consistent evidence for such a relationship for coarse
particulate matter but little evidence for nonmonotonic relationships for carbon
monoxide and ground-level ozone.
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I. Introduction

The March 2005 special issue of this journal included several articles on the Envi-
ronmental Kuznets Curve (EKC) hypothesis. These articles focused on EKC drivers
such as economic development (Marcotullio, Williams, & Marshall, 2005) and tech-
nological diffusion (e.g., Stern, 2005). We heed the call from the guest editors of this
special issue (Leifman & Heil, 2005, pp. 13-14) and provide an “alternative perspec-
tive” by focusing on the role of consumer demand for environmental quality. Our goal
is to determine the extent to which consumer preferences are an important determinant
of an EKC relationship.1 To that purpose, we use highly disaggregate data for the
United States to estimate a relationship between household income and exposure to
pollution, holding constant other factors that might affect the pollution-income rela-
tionship, and examine whether there is an income level at which consumers are willing
to reduce their exposure to pollution. In other words, if structural factors such as the
sectoral composition of the economy, education levels, unemployment rates, age dis-
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tribution of the population, and so on were to remain unchanged as an economy grew
but household income were to increase monotonically, would the pollution-income
relationship eventually turn downward as predicted by the EKC hypothesis?

Several recent articles, for example, List and Gallet (1999), Harbaugh, Levinson,
and Wilson (2002), Millimet, List, and Stengos (2003), and Aldy (2005), have shown
that estimated EKC relationships are highly sensitive to changes in the underlying data
and model specification. We argue that earlier studies have used data that made it diffi-
cult to detect the relationship between economic growth and pollution. The main rea-
son for this is that these studies have typically used multicountry data sets that com-
bine environmental and economic data that reflect differences in consumer
preferences over space and time. We consider it likely that the effect of changes in the
demand for environmental quality is better captured by disaggregate data that link
local pollution to local socioeconomic characteristics. Three earlier articles that use
more disaggregated state-level data for the United States (Aldy, 2005; List & Gallet,
1999; Millimet et al., 2003) find that the estimated pollution-income relationships
vary across states, lending support to our premise that differences in consumer prefer-
ences matter in empirical analyses of the EKC so that highly aggregated data are
inappropriate for estimating such relationships.

We analyze the relationship between household income and air pollution caused by
carbon monoxide (CO), ground level ozone (O3), and coarse particulate matter
(PM10), using 1990 census tract data for the United States. All three pollutants have
well-known adverse health effects (primarily respiratory and cardiovascular) and the
U.S. Environmental Protection Agency (EPA) has established National Ambient Air
Quality Standards (NAAQS) for these pollutants above which ambient concentrations
are considered harmful to human health. Because we focus on the relationship
between household income and (perceived) air quality, we measure pollution by the
number of days during which the concentrations of these three pollutants exceeded
their respective NAAQS at 704 locations. Exceedances of the NAAQS are a widely
publicized measure of local air quality and are therefore more appropriate for our pur-
poses than data on ambient pollutant concentrations that typically do not convey any
meaningful information with regard to air quality to the lay consumer.

For PM10, we find consistent evidence that pollution decreases at high levels of
income. We find a concave but monotonically increasing relationship for O3, and no
evidence for correlation between CO exposure and income. Unlike earlier studies, our
results are robust to changes in assumptions about the underlying distribution,
whether we analyze the pollutants individually or jointly by incorporating the
observed correlation between them, and to different functional forms and sets of
covariates. We consider it likely that this robustness is due to the fact that we use “the
right data for the right problem.”

The remainder of the article is organized as follows: The next two sections
describe the possible aggregation biases in panel data sets and the properties of our
cross-sectional data set. Section IV describes our econometric model and Section V
contains our results. Section VI concludes.
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II. Choosing the Right Data

Most studies have tested the EKC hypothesis with multicountry panel data sets that
contain annual information on either nationwide emissions or local concentrations of
various pollutants (usually measured at several sites in a few major cities within each
country).2 These measurements of pollution are regressed on variables measured at
the country level. The principal advantage of these data sets is their length and breadth
of information.

However, use of pooled cross-section and time-series data from different countries
to estimate a global pollution-income relationship may lead to at least three types of
aggregation biases. First, ambient concentrations data (such as the widely used Global
Environmental Monitoring System [GEMS] data) reflect site-specific pollution mea-
sured at various locations, whereas most of the variables on the right side of the regres-
sion equation are measured at the country level (most notably, the measure of income
is usually per capita GDP). Changes in local pollution are more likely to be correlated
with changes in the local economy than with changes in broad economic aggregates
such as per capita GDP.

A second type of aggregation bias results from including heterogeneous countries
in the same data set. Stern and Common (2001) and Harbaugh et al. (2002) suggest
that estimates of an EKC relationship are sensitive to the range of countries included in
the analysis. List and Gallet (1999) and Aldy (2005) indicate that the relationship may
differ across regions within a country, and Millimet et al. (2003) show that even the
pollution-income relationships estimated with state-level panel data for the United
States are highly sensitive to modeling assumptions. This is not surprising if the rela-
tionship is influenced by local preferences for environmental quality (see Lieb, 2002;
Plassmann & Khanna, in press), because there is no reason to expect that such prefer-
ences are identical across nations or regions. Furthermore, Chimeli and Braden (2005)
suggest that the use of panel data ignores country-specific factors that might give rise
to the EKC and leads to biased and inconsistent estimates when these factors are
correlated with income.

A third type of aggregation bias stems from the fact that the relationship between
income and pollution may shift over time, for example, either because of changes in
the state of technology or because people become increasingly aware of the harmful
effects of pollution. Thus, estimates of EKC relationships with time series data face
the same problem as estimates of consumer demand curves: If the data represent
observations from different curves rather than observations along a single curve, then
estimates obtained from these data indicate the path along which the relationship has
changed over time instead of the relationship itself. For example, List and Gallet
(1999) and Millimet et al. (2003) analyze the EKC hypothesis using state-level panel
data for the United States from 1929 to 1994 and Aldy (2005) uses similarly dis-
aggregated data from 1960 to 1999. All three studies show that the estimated pollution-
income relationships are region-specific and sensitive to modeling assumptions. This
suggests that it is necessary to either explicitly account for changes in environmental
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awareness or use data that cover a time span during which preferences for environ-
mental quality remained unchanged.

These aggregation biases may explain why international- and national-level panel
data do not yield robust estimates of the EKC. A simple way to avoid these biases is to
use cross-section data for a single country at the smallest feasible level of aggregation,
which provide a snapshot of consumer preferences and eliminate the effect of spatial
and temporal changes in people’s awareness of the harmful effects of pollution. The
main disadvantage of cross-sectional data is that they do not permit us to use location-
specific dummies to capture the effect of omitted variables that are constant over time.
However, including variables that capture the major differences between locations
mitigates the effect of omitted variables. In addition, analyzing econometric models
with different specifications indicates whether omitted variables have a qualitatively
significant effect, because different specifications measure the correlation between
included and omitted variables in different ways. If different analyses lead to identical
conclusions, then the omitted variables are unlikely to lead to an incorrect interpreta-
tion of the results.

A final consideration is that consumers are unlikely to react to changes in pollution
that they consider harmless. The EPA has established the NAAQS above which ambi-
ent concentrations are considered harmful to human health. Although the NAAQS
does not necessarily represent an unambiguous scientific threshold above which pol-
lution is dangerous (or below which pollution is harmless), most people assess their
local air quality through exceedances of the NAAQS.3 Observations below the threshold
levels might generate sufficient noise to reduce the precision of the estimated relation-
ship. Simply eliminating the observations for which the ambient concentrations do not
exceed the NAAQS does not solve the problem, because the fact that the ambient con-
centration remained at or below the NAAQS is important information in itself. To
reduce the effect of potentially noisy observations without eliminating information, it
is important to left-censor the data and to record concentrations at relatively harmless
levels as the lower bound of the data.

III. Our Data

To accommodate these issues, we analyze the relationship between household
income and pollution using 1990 data for the United States, at the smallest geographic
unit possible (census tracts).4 The United States is at the upper end of the world’s
income scale, and these data are therefore likely to contain the threshold income levels
beyond which pollution begins to decline (if such threshold levels exist). We measure
pollution by the number of days in 1990 during which the concentrations of CO, O3,
and PM10 at 704 locations exceeded their respective NAAQS. We obtained data on the
annual counts in 1990 from the EPA’s USEPA-AQS database. This database also pro-
vides the geographic coordinates (latitude and longitude) for each monitor, which we
used to identify the census tracts in which the monitors are located.
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Empirical analyses of the EKC hypothesis seek to determine the relationship
between economic growth and environmental degradation. In addition to leading to
higher per capita GDP, economic growth has indirect effects like changes in the com-
position of the work force, improvements in medical services, changes in rural-urban
settlement patterns, and so on. To be able to capture all these effects, most studies use
only per capita GDP as a proxy for economic growth and other covariates that are
likely to be uncorrelated with it.

Because we use household-level intranational data, we use median household
income instead of per capita GDP. In addition, we also analyze the direct relationship
between household income and changes in the demand for environmental quality (the
“pure” income effect) and isolate the effect of income on local pollution by including
variables that are likely to be correlated with income. The literature on the distribution
of air pollution in the United States suggests that pollution in any given area is influ-
enced by population density, racial composition, housing tenure, education, unem-
ployment rate, and a population’s propensity for collective action (see Brooks & Sethi,
1997, and the references cited there). We measure racial composition by the percent-
age of minorities, the level of education by the percentage of high school graduates,
the unemployment rate by the percentage of the labor force that is unemployed, and
housing tenure by the percentage of houses that are renter occupied. We obtained
census-tract–level data on these variables from the 1990 census. We measure the pro-
pensity for collective action at the county level by the fraction of the voting age popu-
lation that was registered to vote in the 1992 presidential elections.5 We include three
additional variables: the percentage of population below the poverty threshold, the
percentage of female-headed households, and the percentage of population older than
65 years.

To account for differences in economic structure, we include the percentage of
working age population in each census tract that is employed in manufacturing. We
use the distance of the EPA monitors from the closest highway to measure the level of
economic activity in the CO and O3 analyses. This distance serves as a proxy for local
economic activity because on-road vehicles are a primary source of emissions of CO
and other precursors of ozone. The primary sources of PM10 are coal-burning facilities
such as electric utilities and copper smelters, and for each monitor we include the
number of electric utilities in that EPA region that are monitored under the EPA’s Acid
Rain Program. To incorporate regional differences, we include dummy variables for
the 10 EPA regions.

Table 1 shows summary statistics of all nondummy variables. The range of house-
hold income extends from $4,999 (or log-income = 8.52) to $96,383 (or log-income =
11.48) with mean $29,652 (or log-income = 10.30) and median $28,397 (or log-
income = 10.25). Eighty percent of the census tracts in our data set have a median
household income between $14,688 (or log-income = 9.60) and $46,051 (or log-
income = 10.74). We regard a turning point that falls well within this income range
as an indicator of a nonmonotonic relationship between income and pollution. A turn-
ing point sufficiently far to the left or right of the median suggests a nonlinear but not
necessarily nonmonotonic relationship between pollution and income. We use the
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95% confidence interval of our turning point estimate to assess whether the turning
point is estimated with sufficient precision so as to be more than an artifact of the
chosen functional form.

IV. A Model of Correlated Count Data

The number of days in a year during which the ambient concentration of a pollutant
exceeds the NAAQS is a nonnegative integer, also known as “count data.” Standard
count data analyses assume that the data follow either a Poisson or a negative binomial
distribution, and estimate the coefficients with maximum likelihood (e.g., Greene,
2002, pp. 740-747). Let cpi denote the number of days during which the concentration
of pollutant p, p = 1, . . . , P, exceeds its NAAQS at location i, i = 1, . . . , I. If we assume
that the pollutants are independently Poisson distributed, then we obtain P univariate
Poisson models,

cpi ~ Poisson ( pi), (1)

with parameters pi∈R+ that describe the means and variances of the distributions.
Assuming that pi = exp( pi' p), where the pi are covariate vectors and the p are the
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Table 1
Summary Statistics

Standard
Variable Mean Deviation Minimum Maximum

Median household income 29,652 13,057 4,999 96,383
Population density (persons/square mile) 2,742 5,360 .57 102,938
Percentage minority 19.90 22.94 .00 100.00
Percentage of labor force unemployeda 7.73 6.24 .00 60.00
Percentage of labor force employed in 17.30 9.50 .00 83.33

manufacturinga

Percentage high school graduates 71.91 15.84 .00 100.00
Percentage voting age population registered 72.07 10.48 44.72 113.26

to voteb

Percentage of houses renter occupied 39.92 24.14 1.66 100.00
Percentage below poverty threshold 15.75 14.05 .00 100.00
Percentage female head of household 11.57 7.46 .00 52.72
Percentage population older than 65 years of age 12.15 8.23 .00 100.00
Distance from the nearest highway in meters 1,138 2,051 .59 27,773
Number of electric utilities in EPA region 30.48 22.13 0 106

a. We measure labor force as the population that is 16 years or older.
b. Refers to the 1992 presidential election. Values shown do not include the predicted data for Wisconsin and
Alaska. The percentage exceeds 100 at several census tracts because of voter fraud (personal communication
with a representative of Election Data Services).



corresponding parameter vectors, turns equation 1 into a set of P unrelated Poisson
regression models.

The Poisson regression model implies that the probability of pollutant p exceeding
its NAAQS depends on the covariates pi, whose effects are identical across census
tract areas. But if this effect fluctuates across census tract areas, then the parameter of
the Poisson distribution is not deterministic but a random variable itself. The standard
way of accommodating such heterogeneity is to assume that pi = exp( pi' p) pi, where
the pi follow a univariate gamma distribution. Integrating the density functions over

pi turns equation 1 into a set of P unrelated Poisson-gamma, or negative binomial,
regression models.

The asymmetry of the gamma distribution implies that an increase in cpi by a factor
of is less likely than a decrease by the same factor. But in the absence of information
that would warrant such a model, it is more appropriate to assume that an increase and
a decrease by the same factor are equally likely. This can be achieved by assuming that

pi = exp( pi' p)exp( pi), where the pi follow a univariate normal distribution. This
distribution has the log-symmetry that the gamma distribution lacks and yields the
Poisson-lognormal regression model. The pi can be interpreted as pollutant-and-
location specific latent, or random, effects that measure the effect of variables omitted
from the covariate vectors. Because we have only a single observation for each loca-
tion and cannot include location-specific fixed effects, these random effects are likely
to improve the precision of our analysis.6

None of the models described above incorporate correlation between the pollutants
because they assume independent pis. However, motor vehicles are a major source of
emissions of CO and volatile organic compounds (VOCs, precursors of O3), and the
CO and O3 counts are positively correlated. Electric utilities and copper smelters are a
major source of PM10 and tend to be located in areas with relatively low population and
highway densities. Counts of PM10 and the other two pollutants are therefore nega-
tively correlated.

Such correlation can be accommodated by allowing the pi to be correlated across
pollutants. For example, if we assume that pi = exp( pi' p) i, where the i follow a
univariate gamma distribution, then integrating the density function of ci = (c1i, . . . ,
cPi) over the common variable i yields the P-variate Poisson-gamma regression
model. The covariance between the concentrations of pollutants p and q at location i is
given by Cov(cpi, cqi) = exp( pi' p)exp( qi' q) , where is the variance of the gamma
distribution. Because all three terms are positive, the multivariate Poisson-gamma
distribution accommodates only nonnegative correlation. An attractive alternative
is the multivariate Poisson-lognormal regression model. This model can be obtained
by assuming pi = exp( pi' p)exp( pi), where the pi follow a P-variate normal dis-
tribution with mean zero and covariance matrix Σ. Because Cov(cpi, cqi) =
exp( pi' p)exp( qi' q)(exp( pq)–1), where pq is the element in row p and column q of
Σ, the model accommodates positive and negative correlation between the elements of
ci.

7

Table 2 shows estimates of the covariance matrix Σ and the corresponding correla-
tion matrix of the latent effects of a joint Poisson-lognormal analysis of all three pol-
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lutants. The latent effects from the three equations show statistically significantly neg-
ative correlation. This suggests that the multivariate Poisson-lognormal model is more
appropriate for our data than three uncorrelated count models.8

The integral of the density function of Ci over i = ( 1i, . . . , Pi) does not have a
closed form solution, which makes maximum likelihood analysis cumbersome. It is
straightforward, however, to estimate the unknown parameters with simulation-based
methods such as the Gibbs sampler, a Markov chain Monte Carlo (MCMC) method.9

We closely follow the setup that Chib and Winkelmann (2001) suggest for this type of
analysis, and we describe the Gibbs sampler for our multivariate Poisson-lognormal
model in the technical supplement to this article. We obtained the results in the next
section from 100,000 runs of the Gibbs sampler after a burn-in of 20,000 runs.

V. Results

Our benchmark specification corresponding to the EKC hypothesis assumes a qua-
dratic relationship between income and pollution, omitting all nonincome covariates
except “distance of the monitor from the nearest highway” (CO and O3) and “number
of electric utilities in EPA region” (PM10), which are unlikely to be correlated with
income. We report the coefficient estimates obtained under this specification in col-
umn 1 of Tables 3a–c. Because we are also interested in the pure income effect, we
report the coefficient estimates for the pollution-income relationship obtained when
all other covariates that are correlated with household income are included (column 2
of Tables 3a-c).

A commonly used estimator of the turning point of the quadratic income-pollution
relationship is the ratio of the {estimator of the coefficient of income} and {minus 2
times the estimator of the coefficient of income squared}. However, the common
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Table 2
Covariance and Correlation Matrices of the Latent Variables p in the Joint

Poisson-Lognormal Analysis in Table 3, Column 5

Covariance Matrix Σ Correlation Matrix

CO O3 PM10 CO O3 PM10

CO 8.8047***
(2.2235) 1

O3 –1.4831*** 1.6109*** –.3977*** 1
(.3649) (.1219) (.0844)

PM10 –1.4672* –1.5087*** 3.5391*** –.2670* –.6408***
(.8725) (.2482) (1.0392) (.1464) (.0709) 1

Note: Standard errors are shown in parentheses. CO = carbon monoxide; O3 = ground level ozone; PM10 =
coarse particulate matter.
* indicates that the coefficient is different from zero at the 90% level. *** indicates that the coefficient is dif-
ferent from zero at the 99% level.
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Table 3a
Analysis of Carbon Monoxide (CO)

(1) (2) (3) (4)

ln(income)1 1.2272 –3.3431 .3112 –1.5436
(5.5665) (6.4687) (1.0682) (11.2161)

ln(income)2 –.1080 .1931 –.1650
(.2821) (.3463) (1.6210)

ln(income)3 .0180
(.0751)

ln(population density) 1.5549*** 1.4147*** 1.4287***
(.4916) (.3252) (.3504)

ln(percentage minority) .6179 .5988 .6062*
(.4890) (.4173) (.4179)

ln(percentage unemployment) .1365 .1268 .1730
(.7473) (.6481) (.6674)

ln(percentage employed in .0603 .0522 .0710
manufacturing) (.5312) (.4610) (.4751)

ln(percentage HS grad) .0809 .2331 .2610
(1.6686) (1.5480) (1.5099)

ln(percentage voters) –.5756 –1.2673 –.8735
(2.5253) (2.2233) (2.3865)

ln(percentage renters) .7992 .7022 .9127
(.9386) (.7814) (.8600)

ln(percentage below poverty) .0060 .0155 .0508
(.8118) (.7454) (.7551)

ln(percentage female head of –.4031 –.4893 –.3853
household) (.6269) (.5403) (.5768)

ln(percentage older than 65) 6.7004 6.1588 6.7028
(5.6148) (4.9465) (5.3685)

Distance from highway –.8170*** –.5490*** –.5279*** –.5278***
(.2645) (.2237) (.1842) (.1983)

Turning Point (TP)a 8.9616 9.0594 9.2136
$7,797 $8,599 $10,032

Cov (β1, β2) –1.5643 –2.2037
Quantiles:

2.5% –13.2935 –9.7574
5.0% –3.2398 –.6466
10.0% 3.3745 4.3006
50.0% 8.9616 9.0594 N/A N/Ab

90.0% 14.9193 13.2683
95.0% 20.6795 17.6554
97.5% 32.7041 24.8578

Note: Standard errors are shown in parentheses. Estimates of intercepts and regional dummies are not shown.
a. The turning point estimates are the modes of the empirical distributions of the turning point estimators.
The turning point of the cubic relationship is the turning point of the peak.
b. For the cubic relationship in column 4, we were unable to obtain estimates of the distributions of the turn-
ing points because the majority of the runs of the Gibbs sampler implied complex roots for the cubic
equation.
* indicates that the coefficient is different from zero at the 90% level. ** indicates that the coefficient is dif-
ferent from zero at the 95% level. *** indicates that the coefficient is different from zero at the 99% level.
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Table 3b
Analysis of Ozone (O3)

(1) (2) (3) (4)

ln(income)1 5.8727*** 4.8198 .5132** –3.837
(2.9074) (3.1234) (.2774) 4 (9.2900)

ln(income)2 –.2590** –.2137* .7258
(.1438) (.1550) (.9797)

ln(income)3 –.0335
(.0352)

ln(population density) .0020 –.0084 .0028
(.0356) (.0353) (.0358)

ln(percentage minority) .0159 .0082 .0222
(.0677) (.0681) (.0698)

ln(percentage unemployment) –.0396 –.0413 –.0601
(.1371) (.1350) (.1376)

ln(percentage employed in –.0186 .0159 –.0281
manufacturing) (.1054) (.1052) (.1084)

ln(percentage HS grad) .0385 .0487 –.0252
(.2880) (.2936) (.2911)

ln(percentage voters) –.9046*** –.8801*** –.8634**
(.4523) (.4551) (.4488)

ln(percentage renters) –.1650 –.1229 –.1815
(.1390) (.1355) (.1423)

ln(percentage below poverty) –.0881 –.1264 –.1009
(.1415) (.1401) (.1395)

ln(percentage female head of .3156*** .3856*** .3441***
household) (.1440) (.1407) (.1427)

ln(percentage older than 65) –1.3400 –1.2804 –1.3162
(1.0808) (1.0764) (1.0859)

Distance from highway .0670** .0771** .0822*** .0761**
(.0377) (.0410) (.0409) (.0408)

Turning Point (TP)a 11.2811 11.0416 10.8790
$79,308 $62,417 $53,050

Cov ( 1, 2) –.4177 –.4868
Quantiles:

2.5% 6.6825 .8962 10.0909
5.0% 10.5652 5.5744 10.2304
10.0% 10.7046 9.9283 10.3613
50.0% 11.2811 11.0416 N/A 10.8790
90.0% 13.4576 13.9402 12.0522
95.0% 15.6850 16.8582 12.9040
97.5% 18.6154 23.5303 14.2135

Note: Standard errors are shown in parentheses. Estimates of intercepts and regional dummies are not shown.
a. The turning point estimates are the modes of the empirical distributions of the turning point estimators.
The turning point of the cubic relationship is the turning point of the peak.
* indicates that the coefficient is different from zero at the 90% level. ** indicates that the coefficient is dif-
ferent from zero at the 95% level. *** indicates that the coefficient is different from zero at the 99% level.
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Table 3c
Analysis of Particulate Matter (PM10)

(1) (2) (3) (4)

ln(income)1 7.3574* 8.8347** .3592 –9.5380
(5.0883) (5.8701) (.8195) (11.0845)

ln(income)2 –.4586** –.4536* 2.3760*
(.2595) (.3068) (1.5804)

ln(income)3 –.1268**
(.0725)

ln(population density) .0368 .0497 .0741
(.0986) (.1001) (.1017)

ln(percentage minority) –.0001 –.0663 .0007
(.2537) (.2441) (.2476)

ln(percentage unemployment) .2869 .4603 .3723
(.4629) (.4402) (.4448)

ln(percentage employed in .0658 .0287 –.0087
manufacturing) (.3156) (.3301) (.3314)

ln(percentage HS grad) –.4489 –.2387 –.4338
(.5244) (.5340) (.5304)

ln(percentage voters) –4.6178*** –3.9503*** –4.3518***
(1.6914) (1.6376) (1.6622)

ln(percentage renters) –.6041 –.4627 –.5513
(.4892) (.4781) (.4816)

ln(percentage below poverty) .9486* 1.2972*** 1.1741**
(.5910) (.5686) (.6428)

ln(percentage female head of .1883 .1272 –.1962
household) (.4456) (.4279) (.4407)

ln(percentage older than 65) 4.9577 5.2233* 5.8717*
(3.8155) (3.6245) (3.8050)

Distance from highway .3048 .2942 .1043 .1741
(.3370) (.3558) (.3604) (.1741)

Turning Point (TP)a 8.1012 9.7439 9.9796
$3,298 $17,049 $21,582

Cov ( 1, 2) –1.3166 –1.7567
Quantiles:

2.5% –4.5745 4.5319 9.1095
5.0% 2.5437 7.1674 9.3167
10.0% 5.1199 8.2269 9.5066
50.0% 8.1012 9.7439 N/A 9.9756
90.0% 8.9479 11.4660 10.5803
95.0% 9.1752 13.0938 10.9419
97.5% 17.5628 16.0076 11.5808

Note: Standard errors are shown in parentheses. Estimates of intercepts and regional dummies are not shown.
a. The turning point estimates are the modes of the empirical distributions of the turning point estimators.
The turning point of the cubic relationship is the turning point of the peak.
* indicates that the coefficient is different from zero at the 90% level. ** indicates that the coefficient is dif-
ferent from zero at the 95% level. *** indicates that the coefficient is different from zero at the 99% level.



assumption of (asymptotic) normality of the income coefficients implies that the dis-
tribution of this estimator is generally asymmetric and does not have a mean (see
Plassmann & Khanna, 2002). We therefore estimate the turning point as the median of
the empirical distribution of the turning point estimator, rather than as the ratio of the
{coefficient of income} and {minus 2 times the coefficient of income squared}. At the
bottom of Tables 3a–c, we show the quantiles of the empirical distributions of the turn-
ing point estimators. The quantiles corresponding to the 2.5th and the 97.5th percen-
tile indicate the 95% confidence intervals.10

The EKC Relationship

Our benchmark quadratic specification for CO (column 1 of Table 3a) yields a turn-
ing point at the extreme lower end of the income data range. The estimated quantiles of
the distribution of the turning point estimator show that the turning point estimate is
highly imprecise, which indicates that the apparent nonmonotonicity is not an integral
part of the estimated relationship. We obtained the same result with a cubic relation-
ship that does not impose the strict symmetry of the quadratic functional form. Neither
of the two income coefficients is significant, and we conclude that there is no evidence
of correlation between CO exceedances and household income.

The estimated turning point from our benchmark specification for O3 (column 1 of
Table 3b) lies toward the right end of the income distribution. Although this turning
point estimate is more precise than that obtained for CO, the confidence interval cov-
ers the entire range of the income data. Nevertheless, both income coefficients are
strongly statistically significant. We conclude that there is some evidence of a concave
relationship between income and O3 exceedances, but we do not have sufficient data
from census tracts with higher income levels to determine whether O3 pollution will
ultimately decrease with income.

In the case of PM10, we also obtain a fairly imprecise estimate of the turning point,
with the 95% confidence interval of the turning point estimator spanning more than
the entire sample income range. However, because the estimated turning point
($3,298) lies at the lower end of our sample income range and the two income coeffi-
cients are statistically significant, we primarily estimate the right leg of the EKC rela-
tionship. We conclude that PM10 exceedances fall with household income.

The Pure Income Effect

To investigate the role of consumer preferences and the demand for environmental
quality, we analyze the pollution-income relationship when income alone increases.
In column 2 of Tables 3a-c, we report the results that we obtained when we included
the other nonincome covariates. Adding these additional covariates does not affect our
main conclusion with regard to the pollution-income relationship in the case of CO
and O3, but for PM10, the results are noticeably different compared to the overall EKC
relationship.
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For CO, the precision of the turning point estimate of the pure pollution-income
relationship is somewhat higher than that of the overall EKC relationship, but the 95%
confidence interval still exceeds the sample income range by a wide margin. As
before, the income coefficients are statistically insignificant and there is no evidence
of correlation between income and CO exceedances. Motor vehicles are the main
source of CO emissions, and the income elasticity of transportation (vehicle miles
traveled) ranges from .5 to 1 (see Agras & Chapman, 1999). Although richer households
consume more vehicle miles, they also tend to drive newer and more fuel-efficient
vehicles. One interpretation of our result is that for higher income households, the
increase in CO pollution caused by greater vehicle use tends to be offset by the fuel
efficiency gains of newer cars.

Our analysis also suggests that CO pollution increases with population density and
decreases with the distance of the EPA monitor to the nearest road. These results are
intuitive because motor vehicles are the main source of CO emissions and densely
populated areas tend to have high vehicle density as well. None of the other covariates
is statistically significant.

The estimated turning point in the pure income relationship for O3 (11.04 or
$62,317) is fairly close to the turning point obtained from the general EKC relation-
ship (11.28 or $79,221) and lies toward the right end of the sample income range. As
before, we conclude that the estimated relationship is positive and likely to be concave
but that our results do not necessarily imply a nonmonotonic relationship. A possible
explanation lies in the fact that O3 is formed by a chemical reaction of VOCs and nitro-
gen oxides (NOx). The main sources of VOCs are chemical plants, refineries, and
motor vehicles, and the main source of NOx is fuel combustion (power plants, heating,
and motor vehicles). Although more transportation tends to be associated with higher
levels of these precursors of O3, it is likely that households with higher incomes will
reduce their exposure to O3 by distancing themselves from the nonmobile sources of
VOCs and NOx. The relationship between O3 and its precursors is highly nonlinear,
and our results suggest that even greater reduction in these precursors is required for
the O3-income relationship to turn downward.

We also find that O3 concentrations increase with the distance of the monitor from
the closest highway. This suggests that most of the measured O3 pollution is due to
sources other than motor vehicles that tend to be located in areas with low population
and highway density.11

PM10 is the only pollutant for which we obtain clear evidence for a nonmonotonic
relationship with household income that is consistent with the EKC hypothesis. The
quadratic specification (column 2 of Table 3c) yields a turning point of 9.74 (or
$17,049) that is fairly close to the median household income in our sample (10.25 or
$28,397). The quantiles at the bottom of Table 3c imply a relatively small confi-
dence interval around the turning point estimate, suggesting that this turning point is
more than just a functional artifact. Most of the anthropogenic emissions of PM10 are
the result of nontransportation fuel combustion and industrial processing. Because it
is possible to reduce one’s exposure to PM10 pollution by moving away from polluting
industries, it is reasonable that our results indicate an inverted U-shaped relationship
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for this pollutant. As the trade-off between finding a job at or near a polluting industry
and being exposed to higher levels of pollution becomes less and less attractive as
income increases, higher income households simply relocate. The statistically signifi-
cant positive coefficient on the percentage of population below the poverty line
supports this interpretation.

The percentage of registered voters has a strong negative effect on O3 and PM10 pol-
lution. This is consistent with the results of Brooks and Sethi (1997), who found that
more politically active communities tend to be exposed to lower pollution.12 Although
one might expect a statistically significant negative coefficient in the case of CO,
ambient CO concentrations are highly correlated with local emissions (EPA, 1997,
2002), so that reducing local CO pollution entails reducing emissions locally from its
primary source (gasoline-powered vehicles). This has a high private cost because it
necessitates lifestyle changes, such as a shift from private to public modes of transpor-
tation, or the adoption of alternative technologies (e.g., hybrid vehicles), which are
fairly expensive. Political action is unlikely to be successful in reducing pollution in
this situation. PM10 and O3, on the other hand, have several point and nonpoint sources
and it is possible to lower exposure to these pollutants through political action that
keeps point sources out of a neighborhood.

VI. Tests of Robustness

The EKC literature reports evidence to suggest that estimated pollution-income
relationships are not very robust. We test the robustness of our estimates by comparing
three different model specifications—linear, quadratic, and cubic—with respect to the
pure income effect and report the results for these specifications in columns 2 through
4 of Tables 3a-c. Figures 1a-c contain the graphs of the estimated pollution-income
relationships for the three functional forms for each pollutant.

All three analyses suggest that the incidence of CO pollution above its NAAQS is
(mildly) increasing with income. The linear relationship is positive but not statistically
significantly different from zero. The (second) turning point of the cubic equation is at
a slightly higher income level than that of the quadratic equation, but both are to the
left of more than 95% of the data. There is no indication of concavity at high levels of
income.

In the case of O3, the linear analysis suggests a statistically significantly positive
relationship, and the quadratic and cubic models indicate that the growth rate of O3

concentrations falls with income. The estimated turning points lie at the right end of
the income distribution and the confidence intervals cover the whole range of the
income data. All three analyses lead us to conclude that there is a monotonic and con-
cave relationship between income and O3.

The graph of the cubic analysis for PM10 shows that pollution increases with
income as long as income is relatively low and that it falls more sharply beyond the
turning point. The quadratic specification that imposes symmetry around the turning
point yields a turning point estimate at a lower income level than the cubic specifica-
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Figure 1
Comparison of Linear, Quadratic, and Cubic Pollution-Income Relationships



tion, which also suggests an asymmetry in slopes before and after the turning point.
Based on the qualitative similarity of the results, we conclude that there is strong evi-
dence of a nonmonotonic concave (inverted U-shaped) relationship between house-
hold income and PM10 pollution.

In the technical supplement to this article (available on the journal’s Web site), we
report two additional sets of specification and robustness tests. First, we assess the
validity of our distributional assumption (normal, Poisson, negative binomial models)
and our dependence assumption (individual versus joint analysis of the three pollut-
ants). We find strong evidence that the joint Poisson-lognormal model is more appro-
priate for our data than any of the alternative models.

Second, we test the robustness of our results by repeating our analysis using the
1990 ambient concentrations of the three pollutants to determine the effect of left-
censoring the data. This data set contains 509 sites with measurements of CO, 820
sites with measurements of O3, and 1,331 sites with measurements of PM10, but only
115 sites with measurements of all three pollutants. Rather than analyzing the pollut-
ants jointly with fewer observations, we analyze them separately using all observa-
tions. The analysis of the additional data yields very similar relationships between
household income and the three pollutants, and we conclude that our results are robust
with respect to changes in the data set.

VII. Conclusion

The EKC hypothesis suggests a nonmonotonic relationship between economic
growth and pollution. To the extent that this relationship is influenced by consumer
preferences that can vary spatially and intertemporally, it is unlikely that there is a sin-
gle global EKC so that analyses that use multicountry panel data sets suffer from
aggregation bias. We conclude that it is necessary to first estimate local (regional or
country-specific) relationships before attempting to construct a global EKC. Our
analysis of cross-sectional census-tract-level data for the United States suggests that
the income level at which households are willing to reduce their exposure to pollution
depends on the nature of pollution. We find evidence for a nonmonotonic relationship
between income and exposure to PM10, but little evidence for such a relationship for
CO and O3.

From a policy perspective, it is important to know whether changes in income alone
and without the compounding effects of associated changes, such as a change in the
structural composition of the economy or the level of technology, can yield an inverted
U-shaped pollution-income relationship. We find an inverted U-shaped pure income
relationship between household income and PM10 with a peak at about $20,000. PM10

is a point-source pollutant, and it is fairly straightforward and relatively inexpensive to
reduce exposure to PM10 by relocating, without necessarily reducing global emis-
sions. We do not find much evidence of an inverted U-shaped relationship between
household income and the two non-point-source pollutants, O3 and CO, that are gener-
ated primarily by the use of gasoline-powered transportation. The private abatement
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costs for O3 and CO pollution are relatively high. Even in a country with one of the
highest incomes in the world, household income has not yet reached the level beyond
which the pollution-income relationship for such pollutants becomes negative.

Although economic growth and increases in household income are usually posi-
tively correlated, an analysis of the pure income relationship between household
income and pollution (when only household income increases) has different policy
implications than an analysis of the overall relationship between increases in income
and pollution. The commonly estimated EKC relationship outlines the pollution-
income trajectory as an economy passes through different stages of development and
experiences a changing sectoral composition, unemployment rates, education levels,
income and population distributions, and so on, along with a higher per capita income.
The pure income effect emphasizes the effect of increasing household or per capita
income without any change in the other variables typically associated with economic
development. Our analysis suggests that economic growth by itself may be insuffi-
cient to generate a downturn in the pollution-income trajectory, especially for the
pollutants with a high private abatement cost.

Most EKC studies using CO2 data have not found any evidence of a nonmonotonic
pollution-income relationship. For a global pollutant such as carbon dioxide (CO2),
whose abatement is likely to require a significant shift in lifestyle patterns and that has
a high private abatement cost and a low private abatement benefit, it is unlikely that the
pollution-income trajectory will become negative solely as the result of economic
growth. It is much more likely that reducing global CO2 emissions will require signifi-
cant strides in economic development accompanied by a change in consumer attitudes
toward pollution and a change in the state of technology as well.

Notes

1. Barbier (1997, p. 370) and Carson, Jeon, and McCubbin (1997, p. 434) have argued that most explana-
tions for the EKC, such as changes in technology, civil and political liberties, trade policy, and environmental
policy, are simply the vehicles that enable consumers to reveal their preferences for environmental quality.

2. Selden and Song (1994), Holtz-Eakin and Selden (1995), Stern and Common (2001), and Halkos and
Tsionas (2001) use panel data on national emissions. Grossman and Krueger (1992, 1995), Torras and Boyce
(1998), Barrett and Graddy (2000), and Harbaugh et al. (2002) use panel data on local concentrations.

3. For example, in many regions in the United States, it is common to hear the local O3 rating based on the
NAAQS and the EPA’s Air Quality Index along with the daily weather forecast.

4. Other studies that use cross-section data for the United States include Carson et al. (1997), who ana-
lyze state-level air pollution data, Kahn (1998), who analyzes California vehicular emissions data, Berrens,
Bohara, Gawande, and Wang (1997) and Gawande, Bohara, Berrens, and Wang (2000), who analyze county
and metropolitan statistical area data for hazardous waste facilities, and Khanna (2002) and Khanna and
Plassmann (2004), who analyze ambient air pollutant concentrations data for census tracts.

5. We obtained county-level election data from Election Data Services, Inc., which does not report voter
turnout data for many jurisdictions. We therefore could not use the ratio of voter turnout to voter registration
to capture collective action. North Dakota does not require voter registration, and we used the ratio of voter
turnout to voting age population. The data set does not include information on Wisconsin and Alaska, and we
predicted the log of the voter registration rate in these two states with an auxiliary regression, using county-
level data for the entire United States.
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6. The random effects in the Poisson-lognormal model require neither the assumption that the pi are real-
izations from the same distribution nor that they are uncorrelated with the other covariates, the two main
objections that are frequently raised against the least squares random-effects model. The Poisson-lognormal
model easily accommodates observation-specific distributions as well as correlations between the pi and the
other covariates.

7. Aitchison and Ho (1989) show the derivation of the moments of the multivariate Poisson-lognormal
distribution. Winkelmann (2000, pp. 182-184) describes the multivariate Poisson-lognormal regression
model.

8. Recall that the covariance matrix of the latent effects measures the covariances of the concentrations as
well as the covariances of variables that were omitted from the three regression equations. The estimates in
Table 2 do not necessarily imply that all pollutants are negatively correlated, because the estimates might be
driven by negative correlations of the effects of omitted variables.

9. MCMC methods are iterative techniques that use Markov chains to perform Monte Carlo integrations
of integrals of interest. For details on MCMC methods and their applications to count data, see Casella and
George (1992), Gilks, Richardson, and Spiegelhalter (1996), Chib and Greenberg (1996), Gamerman
(1997), and Chen, Shao, and Ibrahim (2000).

10. A common method for assessing the precision of the turning point estimate is to use a normal approx-
imation of the turning point estimator, the “delta method” (e.g., Greene, 2002, pp. 913-914). The asymmetry
of the distributions of turning point estimators of polynomial regression functions makes the normal approx-
imation inappropriate and implies that it is not possible to derive (asymptotic) 95% confidence intervals of
the estimates by adding and subtracting 1.96 times the estimated standard error.

11. Alternatively, it is possible that O3 concentrations are lower near highways because NO emissions
from vehicles destroy it via the titration effect, whereas in areas further away from highways, the NOx emis-
sions may reproduce O3 via photochemical reactions. We thank an anonymous referee for suggesting this
alternative explanation.

12. Brooks and Sethi (1997) analyze the relationship between community characteristics and exposure
to aggregate emissions of more than 300 chemicals reported in the EPA’s Toxics Release Inventory.
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