Multilayer Networks

Hiroki Sayama sayama@binghamton.edu

Multilayer networks

- Networks that are composed of multiple layers (tautological...)
- · A number of different names:
 - Multilayer networks
 - Multiplex networks
 - Interconnected networks
 - Interdependent networks
 - Networks of networks etc...

Heads up

- This is even newer than temporal network research
- Tools for multilayer network research still under active development
 - But there are some tools now available ©
- More math/theory-driven, and involve more dynamical models, than temporal network research

Examples

- Social network that involve different types of connections
- Network of airports connected by different air carriers
- Multiple infrastructures of a nation that are connected to each other
- Species interaction patterns that involve distinct layers of habitat

Fundamentals of Multilayer Networks

General representation

 To represent a multilayer network, define the following function:

$$a(i, \alpha, j, \beta) = 0$$
 or 1 (or weight)

• $a(i, \alpha, j, \beta) = 1$ if node i in layer α is connected to node j in layer β , otherwise 0 (This can be represented mathematically by an adjacency tensor)

Aspects

- · Layers α , β can be mapped to a space made of multiple "aspects"
 - Time, location, type of connection, etc.
 - This means α , β can be vectors
- Aspects help organize the relationships between different layers

Example: Zachary's Karate Club Club (ZKCC) network

http://networkkarate.tumblr.com/

Source: Kivelä et al. (2014)

- Write down the values of the adjacency function $a(i, \alpha, j, \beta)$ for some edges in the previous ZKCC network
- Represent the same information in an edge list

Different classes of edges

• Intra-layer edge $[(i, \alpha), (j, \alpha)]$

- Inter-layer edge [(i, α), (j, β)] $\alpha \neq \beta$
 - In particular: Coupling edge

[(i,
$$\alpha$$
), (i, β)] $\alpha \neq \beta$

 Identify (a) intra-layer edges, (b) inter-layer edges and (c) coupling edges in this multilayer network

Properties of multilayer networks

- Do all the layers contain the same set of nodes? → node-aligned
- Or, does each node appear only in one layer? → layer-disjoint
- Are all the inter-layer edges coupling ones? → diagonally coupled
 - Are the diagonal coupling edges independent of nodes? → layer-coupled

Is this network (a) node-aligned or layer-disjoint?
 (b) diagonally coupled? (c) layer-coupled?

Different kinds of diagonal coupling along an aspect

 Do the diagonal edges connect a node to its counterparts in all other layers along an aspect? → categorical

- Or, do the diagonal edges connect a node to its counterparts only in "nearby" layers along an aspect?
 - \rightarrow ordinal

 Does each of the two aspects of this network (a) categorical or (b) ordinal?

Temporal networks as multilayer networks

 Temporal networks can also be considered a special case of multilayer networks that have only one ordinal aspect: time

Source: De Domenico et al. (2013)

Aspect: Time

Two major subclasses of multilayer networks

- Node-colored networks

 (a.k.a. "interconnected networks",
 "interdependent networks", "networks of networks")
- Edge-colored networks

 (a.k.a. "multiplex networks",
 "multirelational networks")

Node-colored networks

 Interconnected networks, interdependent networks, networks of networks, etc.

18

Source: Kivelä et al. (2014)

Edge-colored networks

 Multiplex networks, multirelational networks, etc.

Source: Kivelä et al. (2014)

 Give a few real-world examples of (a) node-colored and (b) edge-colored multilayer networks

 Discuss properties of those networks, especially the types of their interlayer connections

Computational Modeling and Analysis of Multilayer Networks

PlexMath project

http://deim.urv.cat/~alephsys/plexmath/

Pymnet library

http://www.mkivela.com/py

mnet/

 Developed by Mikko Kivelä

- Download the pymnet library and its documentation
- Follow its tutorial to learn how to build multilayer/multiplex networks
 - Place the "pymnet" folder to your working directory, or add it to your Python path
 - Commands are different from NetworkX, but access to all NetworkX commands are provided under "nx." prefix

Pymnet's data structure

- MultilayerNetwork(aspects = **)
 - To represent general multilayer networks
- MultiplexNetwork(couplings = **)
 - To specifically represent multiplex networks

 nx.Graph(g) converts these into a NetworkX Graph (monolayer only)

Pymnet: Basics

- add_node(), add_layer()
- g[ID][ID] = 1 adds edge (ID: sequence of indices, including aspects)
- list(g) gives node list
- list(g.iter_**()) gives node, layer, or node-layer list
- list(g.edges) gives edge list
- list(g[ID]) gives neighbor list
- g[ID].deg() or .str() gives degree or strength

Drawing multilayer networks

Just draw(g) !!

- Use "%matplotlib auto" so you can click and drag to rotate the plot
- Many options are available to customize visualization results

- · Check out the references of pymnet
 - http://www.mkivela.com/pymnet/reference.html
- Create a few multilayer/multiplex networks and visualize them
- Explore customization of visualization as you like

Get the data!

http://deim.urv.cat/~alephsys/plexmath/

- Download the "Vickers & Chan 7th graders social network" data from the PlexMath website
- Write a Python code to read the data and construct a multilayer network
 - As a MultilayerNetwork object
 - As a MultiplexNetwork object
- Visualize it

Some built-in measurements

- degs(g) gives degree distribution
- · density(g) gives network density
- multiplex_degs(g) for each layer
- multiplex_density(g) for each layer
- · Various clustering measurements
 - But not so many functions available yet... (the author Mikko said he would welcome any contributions!)

 Plot the degree distribution for each layer in the Vickers & Chan 7th graders multiplex network

 Measure the density of each layer and determine which layer was most/least dense

Other network measurements

- You can represent a multilayer network as a plain monolayer network and apply various measurements
- Is it a multiplex network and does changing layers take no cost or distance?
 - Yes to both → Aggregate the network
 - Otherwise → Flatten the network

Note: When you create a monolayer network...

- Consider how the weights of intralayer edges compare to each other between different layers
- Each layer may represent different connectivity; adjust their weights as needed
 - E.g.:

 Best friend, friend, acquaintance
 Flight, train, bus, bike, walk

Aggregating layers

- aggregate(g, aspects) creates a simple network aggregated over aspects
 - Works for both multilayer and multiplex, but most meaningful for multiplex

- Create an aggregated network of the Vickers & Chan 7th graders multiplex network
- Calculate several shortest paths, average shortest path length, and several centralities of the nodes
- Detect communities using the Louvain method

"Flattening" multilayer networks

 Ignore layers and represent all the connections in a plain network

 (This is essentially the same as the construction of a space-time network for a temporal network)

Supra-adjacency matrix

 An adjacency matrix of a flattened version of a multilayer network

If inter-layer edges are "diagonal" couplings, the inter-layer matrices are diagonal too (hence the name)

Supra-adjacency matrix in pymnet

- supra_adjacency_matrix(g) creates
 the supra-adjacency matrix of g and
 a list of node IDs (arranged in the
 order used in the matrix)
- nx.from_numpy_matrix(A), with A
 being the supra-adjacency matrix,
 creates a flattened monolayer
 network

Exercise

- Create a flattened network of the Vickers & Chan 7th graders multiplex network
- Calculate several shortest paths, average shortest path length, and several centralities of the nodes
- Detect communities using the Louvain method

Inter-layer measurement

· "Interdependence"

Ratio of the number of shortest paths that use multiple layers to the total number of shortest paths

High interdependence

→ Communication/transportation in a multilayer network uses multiple layers more often (i.e., those layers depend on each other)

Exercise

 Design and implement a code to measure the level of interdependence in the Vickers & Chan 7th graders multiplex network

 Apply the code to other multilayer network data

FYI: If you use R...

- · muxViz
 - http://muxviz.net
 - http://www.youtube.com/watch?v=gcpYSdi_-xI

Developed by Manlio De Domenico

Dynamical Processes on Multilayer Networks

Dynamics on multilayer networks

- Several dynamical models have been studied recently
- Mostly focused on two-layer multiplex networks

 pymnet's network objects cannot contain additional attributes such as states, so you need to use NetworkX

Cascade of failures

 Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464(7291), 1025-1028.

- Proposed a model of twolayer interdependent network (e.g., power grid and the Internet)
- Fragmentation by a cascade of failures occurs quite differently on this model than monolayer networks

Diffusion

 Gomez, S., Diaz-Guilera, A., Gomez-Gardeñes, J., Perez-Vicente, C. J., Moreno, Y., & Arenas, A. (2013). Diffusion dynamics on multiplex networks. Physical Review Letters, 110(2), 028701.

- Studied diffusion processes on two-layer multiplex networks
- Analyzed the spectrum of a "supra-Laplacian" matrix of the network

Structural transition

 Radicchi, F., & Arenas, A. (2013). Abrupt transition in the structural formation of interconnected networks. Nature Physics, 9(11), 717-720.

Discovered that the algebraic connectivity and Fiedler's vector undergo a sharp transition as interlayer connectivity is increased on two-layer multiplex networks

Pattern formation

Kouvaris, N. E., Hata, S., & Díaz-Guilera, A.
 (2015). Pattern formation in multiplex networks.
 Scientific reports, 5, 10840.

- Studied reaction-diffusion dynamics on two-layer multiplex networks
- · Showed that the difference in topologies between two layers can cause pattern formation (a.k.a. Turing instability) even if diffusion constants are the same

Spreading

 De Domenico, M., Granell, C., Porter, M. A., & Arenas, A. (2016). The physics of spreading processes in multilayer networks. Nature Physics 12, 901-906.

Coupled dynamics

Exercise

- Implement a "cascade of failure" model on a random multilayer network with k layers
- Conduct numerical simulations with the probabilities of intra- and inter-layer connections systematically varied
- Identify the parameter values with which large-scale failure occurs