
Topological Analysis (1)

Hiroki Sayama sayama@binghamton.edu

Network data import & export

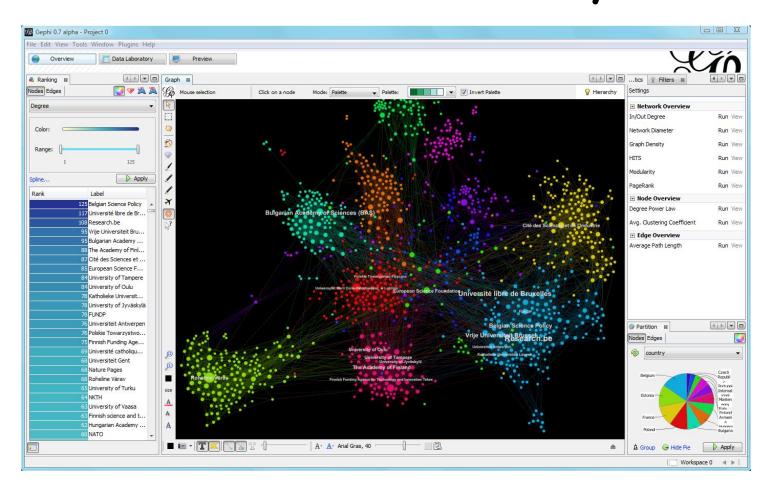
read_gml

- read_adjlist
- read_edgelist
 - Creates undirected graphs by default;
 use "create_using=nx.DiGraph()" option to generate directed graphs

Import Supreme Court Citation
 Network Data into NetworkX

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/XMBQL6)

- · Count how many nodes and edges are there
- Measure average in-degree and outdegree in the network


Network visualization

- · "nx.draw"
- · Various layout functions
 - Spring, circular, random, spectral, etc.

 For visualization of large-scale networks, use "Gephi"

Gephi

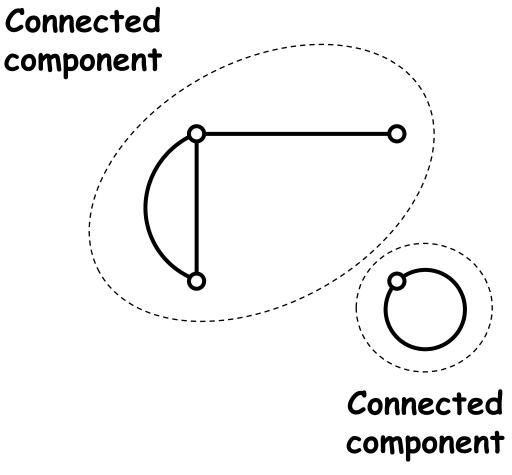
· Network visualization & analysis tool

Basic Properties of Networks

Basic properties of networks

- Number of nodes
- Number of links
- Network density
- · Connected components

Network density


- The ratio of # of actual links and # of possible links
 - For an undirected graph:

$$d = |E| / (|V| (|V| - 1) / 2)$$

- For a directed graph:

$$d = |E| / (|V| (|V| - 1))$$

Connected components

Number of connected components = 2

- Measure the following for the (undirected) Supreme Court Citation Network
 - Number of nodes, links
 - Network density
 - Number of connected components
 - Size of the largest connected component
 - Distribution of the sizes of connected components

Shortest path lengths, etc.

- shortest_path
- shortest_path_length
- · eccentricity
 - Max shortest path length from each node
- · diameter
 - Max eccentricity in the network
- · radius
 - Min eccentricity in the network

 Draw the Karate Club network with its nodes painted with different colors according to their eccentricity

Characteristic path length

- Average shortest path length over all pairs of nodes
- Characterizes how large the world represented by the network is
 - A small length implies that the network is well connected globally

Clustering coefficient

- · For each node:
 - Let n be the number of its neighbor nodes
 - Let m be the number of links among the k neighbors
 - Calculate c = m / (n choose 2)
 - Then $C = \langle c \rangle$ (the average of c)
- · C indicates the average probability for two of one's friends to be friends too
 - A large C implies that the network is well connected locally to form a cluster

- Measure the average clustering coefficients of the following network:
 - Karate Club graph
 - Krackhardt Kite graph
 - Supreme Court Citation network
 - Any other network of your choice
- · Compare them and discuss
 - Can you tell anything meaningful?

Centralities

Centrality measures ("B,C,D,E")

- Degree centrality
 - How many connections the node has
- · Betweenness centrality
 - How many shortest paths go through the node
- · Closeness centrality
 - How close the node is to other nodes
- · Eigenvector centrality

Degree centrality

· Simply, # of links attached to a node

$$C_D(v) = deg(v)$$

or sometimes defined as

$$C_D(v) = \deg(v) / (N-1)$$

Betweenness centrality

 Prob. for a node to be on shortest paths between two other nodes

$$C_{B}(v) = \frac{1}{(n-1)(n-2)} \sum_{s \neq v, e \neq v} \frac{\# sp_{(s,e,v)}}{\# sp_{(s,e)}}$$

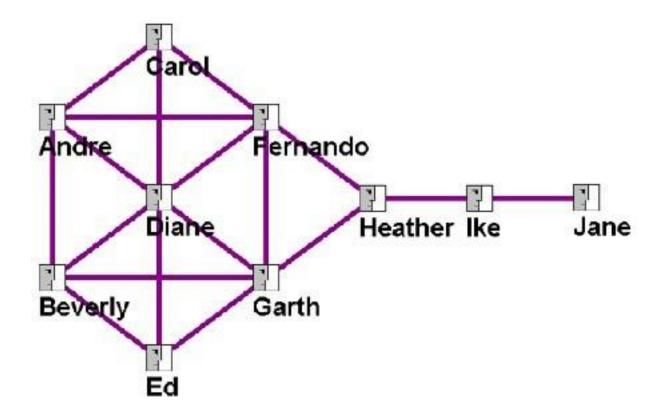
- · s: start node, e: end node
- * $\# sp_{(s,e,v)}$: # of shortest paths from s to e that go though node v
- $\cdot \# sp_{(s,e)}$: total # of shortest paths from s to e
- · Easily generalizable to "group betweenness"

Closeness centrality

 Inverse of an average distance from a node to all the other nodes

$$C_{C}(v) = \frac{n-1}{\sum_{w\neq v} d(v,w)}$$

- · d(v,w): length of the shortest path from v to w
- · Its inverse is called "farness"
- · Sometimes " Σ " is moved out of the fraction (it works for networks that are not strongly connected)
- NetworkX calculates closeness within each connected component


Eigenvector centrality

· Eigenvector of the largest eigenvalue of the adjacency matrix of a network

$$C_{E}(v) = (v-th element of x)$$

 $Ax = \lambda x$

- λ: dominant eigenvalue
- \cdot x is often normalized (|x| = 1)

 Who is most central by degree, betweenness, closeness, eigenvector?

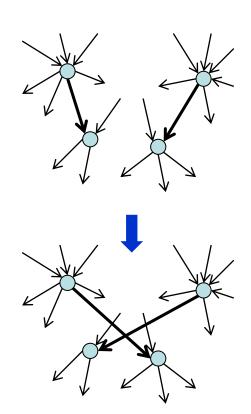
Which centrality to use?

- · To find the most popular person
- To find the most efficient person to collect information from the entire organization
- To find the most powerful person to control information flow within an organization
- · To find the most important person (?)

 Measure four different centralities for all nodes in the Karate Club network and visualize the network by coloring nodes with their centralities

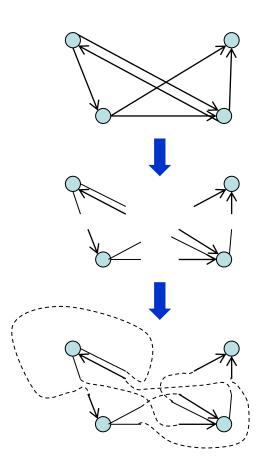
 Create a directed network of any kind and measure centralities

- Make it undirected and do the same
 - How are the centrality measures affected?


Randomizing Network Topologies

Randomizing networks

- Construct a "null model" network samples to test statistical significance of experimentally observed properties
 - Randomized while some network properties are preserved (e.g., degrees)
 - If the observed properties still remain after randomization, they were simply caused by the preserved properties
 - If not, something else was causing them


Randomlization method (1)

- · Double edge swap method
 - 1. Randomly select two links
 - 2. Swap its end nodes
 - (If this swap destroys some network property that should be conserved, cancel it)
 - 3. Repeat above many times

Randomlization method (2)

- · Configuration model (Newman 2003)
 - 1. Cut every link into halves (heads and tails)
 - 2. Randomly connect head to tail
 - This conserves degree sequences
 - (Could result in multiple links and self-loops)

Other randomization methods

· Keeping only #'s of nodes and edges

· Degree sequence method

· Expected degree sequence method

- Randomize connections in the Karate Club graph
- Measure the average clustering coefficient of the randomized network many times
- Test whether the average clustering coefficient of the original network is significantly non-random or not