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Topological Analysis (1)



Network data import & export

• read_gml

• read_adjlist

• read_edgelist
– Creates undirected graphs by default; 
use “create_using=nx.DiGraph()” option to 
generate directed graphs
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Exercise

• Import Supreme Court Citation 
Network Data into NetworkX
(https://dataverse.harvard.edu/dataset.xhtml?per
sistentId=doi:10.7910/DVN/XMBQL6)

• Count how many nodes and edges are 
there

• Measure average in-degree and out-
degree in the network
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Network visualization

• “nx.draw”

• Various layout functions
– Spring, circular, random, spectral, etc.

• For visualization of large-scale 
networks, use “Gephi”
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Gephi

• Network visualization & analysis tool
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Basic Properties of Networks



Basic properties of networks

• Number of nodes

• Number of links

• Network density

• Connected components
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Network density

• The ratio of # of actual links and # 
of possible links

– For an undirected graph:

d = |E| / ( |V| (|V| - 1) / 2 )

– For a directed graph:

d = |E| / ( |V| (|V| - 1) )

8



9

Number of 
connected 
components

= 2

Connected
component

Connected
component

Connected components



Exercise

• Measure the following for the 
(undirected) Supreme Court Citation 
Network
– Number of nodes, links

– Network density

– Number of connected components

– Size of the largest connected component

– Distribution of the sizes of connected 
components
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Shortest path lengths, etc.

• shortest_path

• shortest_path_length

• eccentricity
– Max shortest path length from each node

• diameter
– Max eccentricity in the network

• radius
– Min eccentricity in the network
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Exercise

• Draw the Karate Club network with its 
nodes painted with different colors 
according to their eccentricity
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Characteristic path length

• Average shortest path length over all 
pairs of nodes

• Characterizes how large the world 
represented by the network is
– A small length implies that the network is 
well connected globally
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Clustering coefficient

• For each node:
– Let n be the number of its neighbor nodes

– Let m be the number of links among the k 
neighbors

– Calculate c = m / (n choose 2)

Then C = <c>  (the average of c)

• C indicates the average probability for 
two of one’s friends to be friends too
– A large C implies that the network is well 
connected locally to form a cluster



Exercise

• Measure the average clustering 
coefficients of the following network:
– Karate Club graph

– Krackhardt Kite graph

– Supreme Court Citation network

– Any other network of your choice

• Compare them and discuss
– Can you tell anything meaningful?
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Centralities
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Centrality measures (“B,C,D,E”)

• Degree centrality
– How many connections the node has

• Betweenness centrality
– How many shortest paths go through the 
node

• Closeness centrality
– How close the node is to other nodes

• Eigenvector centrality



Degree centrality

• Simply, # of links attached to a node

CD(v) = deg(v)

or sometimes defined as

CD(v) = deg(v) / (N-1)
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Betweenness centrality

• Prob. for a node to be on shortest 
paths between two other nodes

CB(v)= Σs≠v,e≠v

• s: start node, e: end node

• #sp(s,e,v): # of shortest paths from s to e that 
go though node v

• #sp(s,e): total # of shortest paths from s to e

• Easily generalizable to “group betweenness” 19
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Closeness centrality

• Inverse of an average distance from a 
node to all the other nodes

CC(v) =

• d(v,w): length of the shortest path from v to w

• Its inverse is called “farness”

• Sometimes “Σ” is moved out of the fraction (it works for 
networks that are not strongly connected)

• NetworkX calculates closeness within each connected 
component
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Eigenvector centrality

• Eigenvector of the largest eigenvalue 
of the adjacency matrix of a network

CE(v) = (v-th element of x)

Ax = lx

• l: dominant eigenvalue

• x is often normalized (|x| = 1)
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Exercise

• Who is most central by degree, 
betweenness, closeness, eigenvector?
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Which centrality to use?

• To find the most popular person

• To find the most efficient person to 
collect information from the entire 
organization

• To find the most powerful person to 
control information flow within an 
organization

• To find the most important person (?)
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Exercise

• Measure four different centralities 
for all nodes in the Karate Club 
network and visualize the network by 
coloring nodes with their centralities
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Exercise

• Create a directed network of any kind 
and measure centralities

• Make it undirected and do the same

– How are the centrality measures 
affected?
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Randomizing Network Topologies



Randomizing networks

• Construct a “null model” network 
samples to test statistical significance 
of experimentally observed properties
– Randomized while some network 
properties are preserved (e.g., degrees)

– If the observed properties still remain 
after randomization, they were simply 
caused by the preserved properties

– If not, something else was causing them
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Randomlization method (1)
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• Double edge swap method

1. Randomly select two links

2. Swap its end nodes
• (If this swap destroys some

network property that should 
be conserved, cancel it)

3. Repeat above many times



Randomlization method (2)

• Configuration model (Newman 2003)

1. Cut every link into
halves (heads and
tails)

2. Randomly connect
head to tail
• This conserves

degree sequences

• (Could result in multiple
links and self-loops)

29



Other randomization methods

• Keeping only #’s of nodes and edges

• Degree sequence method

• Expected degree sequence method
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Exercise

• Randomize connections in the Karate 
Club graph

• Measure the average clustering 
coefficient of the randomized network 
many times

• Test whether the average clustering 
coefficient of the original network is 
significantly non-random or not
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