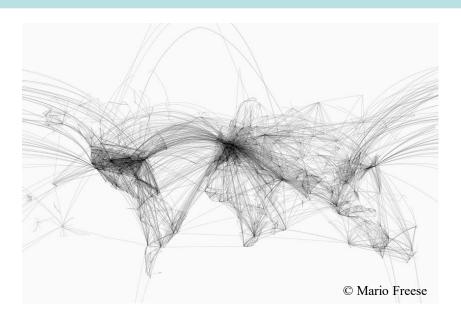
## Random Networks



Hiroki Sayama sayama@binghamton.edu

#### Small-World Phenomenon

### "Bacon Number"

- BN = 1 for those who co-starred with Kevin Bacon in a film
- BN = 2 for those who co-starred with actors/actresses with BN=1

•••

- Mostly BN <= 3 !!</li>
- The largest finite BN = 8 !!

#### "Erdös Number"

 EN = 1 for those who co-authored a paper with a Hungarian mathematician Paul Erdös (1913-1996)

 EN = 2 for those who co-authored a paper with authors with EN=1

•••

- Mostly EN <= 7 !!</li>
- The largest finite EN = 13 !!

FYI - Hiroki's EN=4

## 3.5 degrees of separation in FB

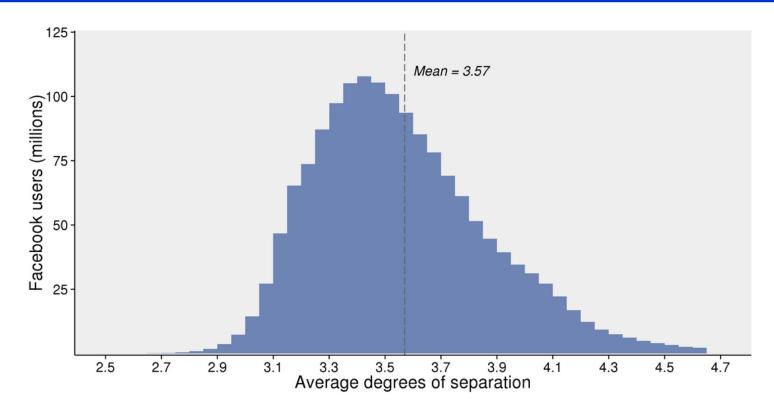


Figure 1. Estimated average degrees of separation between all people on Facebook. The average person is connected to every other person by an average of 3.57 steps. The majority of people have an average between 3 and 4 steps.

 https://research.facebook.com/blog/three-and-ahalf-degrees-of-separation/

## "Small-world" phenomenon

- Most real-world networks are remarkably "small"
  - Despite a huge number of nodes involved
  - Even if connections are relatively sparse

· Why?

#### Random Networks

### Classical explanation: Erdös-Rényi random network model

- · A network made of N nodes
- · Each node pair is connected randomly and independently with probability p
- · A small characteristic path length is realized because of randomness
  - Number of nodes reachable from a single node within k steps increases exponentially with k

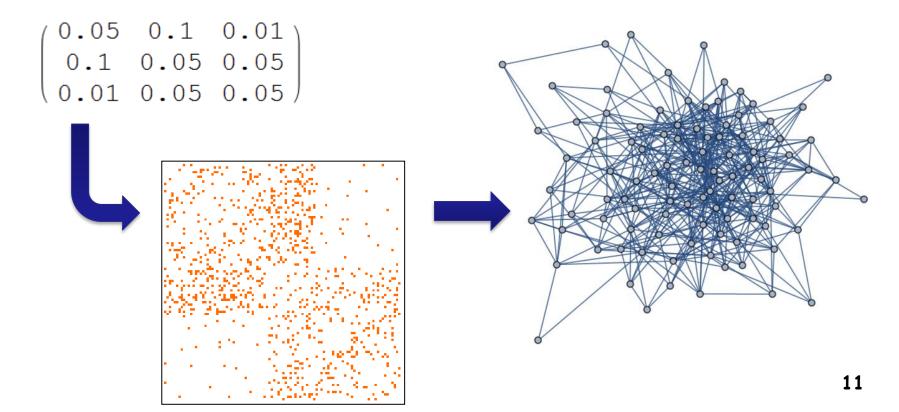
- Create and plot a few ER random networks using NetworkX
- · Measure their properties
  - Network density
  - Characteristic path length
  - Clustering coefficient
  - Degree distribution
  - etc.

### Limitation of ER networks

- ER random networks have very few loops or local clusters if connection probability is small
- Real-world networks are often clustered with a lot of local connections, forming "cliques", while maintaining very small characteristic path lengths

## ER networks with partitions: Stochastic block models

 Generates random networks from the connection density matrix for blocks



- See the community information in the Karate Club network data
- Create its block model using the quotient\_graph() function
- Construct a stochastic block model using connection probabilities obtained above (you can use the stochastic\_block\_model() function)
- · Compare the original network and the randomly generated one

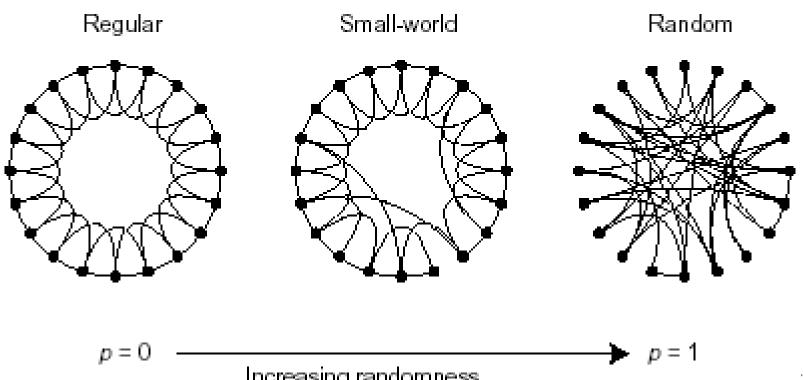
#### Small-World Networks

## Explanation (1): Small-world network

- D. J. Watts & S. H. Strogatz,
   Collective dynamics of 'small-world' networks, Nature 393:440-442, 1998.
- A network that is mostly locally connected but with a few global connections
- A SW network generally has a very small characteristic path length

## Experiment by Watts & Strogatz

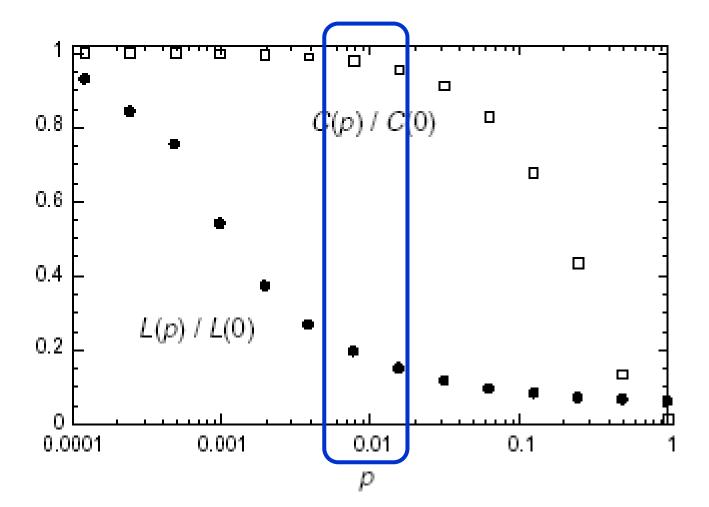
 Moving from a regular, locally connected graph to a random, globally connected graph



- Create a ring-shaped network made of n nodes
- Connect each node to k nearest neighbors
- · Randomly rewire edges one-by-one
- Monitor what happens to the characteristic path length and the average clustering coefficient

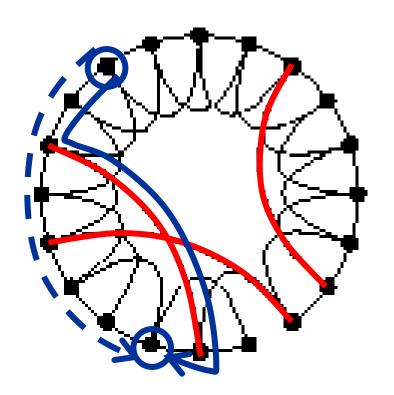
## The "small-world" property

· This network is small, though still locally connected



## Why such a small world?

#### Small-world



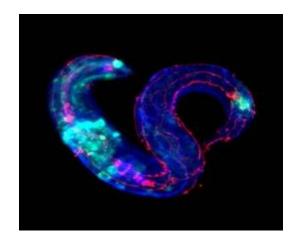
The existence of a few "far leaping" links significantly decreases the length of shortest paths for most pairs of nodes

### Small-world property found in realworld networks

|             | L <sub>actual</sub> | $L_{random}$ | C <sub>actual</sub> | C random |
|-------------|---------------------|--------------|---------------------|----------|
|             |                     |              |                     |          |
| Film actors | 3.65                | 2.99         | 0.79                | 0.00027  |
| Power grid  | 18.7                | 12.4         | 0.080               | 0.005    |
| C. elegans  | 2.65                | 2.25         | 0.28                | 0.05     |
| •••••       |                     | •••••        | ••••••              | •••••    |







- Create and plot several WS smallworld networks using NetworkX
- · Measure their properties
- Study how the characteristic path length and the clustering coefficient of WS networks change with increasing rewiring probability (for the same number of nodes, e.g. n=100)

## Degree Distribution

## Degree distribution

· Gives a rough profile of how the connectivity is distributed within the network

$$\Sigma_k P(k) = 1$$
 (or total # of nodes)

### Degree distribution of ER networks

 Degree distribution of an ER random network is given by a binomial distribution:

$$P(k) = {}_{N-1}C_k p^k (1-p)^{N-1-k}$$

· With large N (with fixed Np), it approaches a Poisson distribution:

$$P(k) \sim (Np)^k e^{-Np} / k!$$

- Obtain the degree distribution of the Supreme Court Citation network (after making it into undirected)
- · Plot the distribution in a linear scale
- · Plot the distribution in a log-log scale

 Create an arbitrary complex network of your choice, with at least 10,000 nodes in it

· Plot its degree distribution

#### Scale-Free Networks

## Explanation (2): Scale-free network

 A network whose degree distribution obeys a power law

 More general and natural than the small-world network model

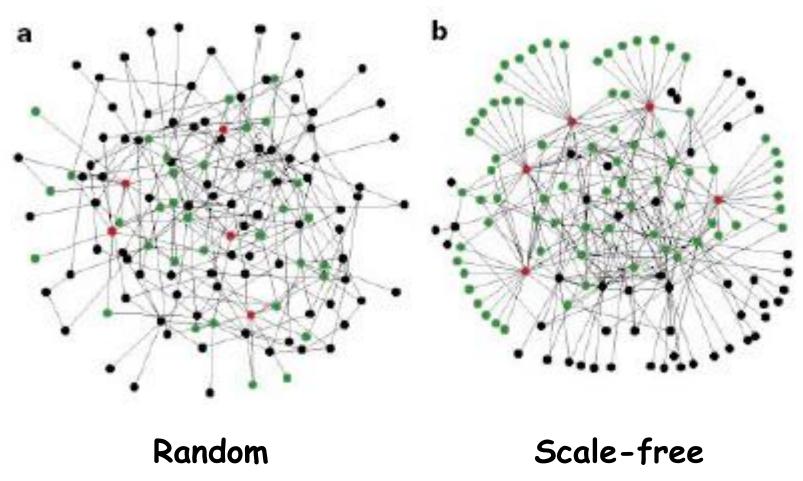
## Power law degree distribution

• P(k) ~ k⁻γ

A few well-connected nodes, a lot of poorly connected nodes

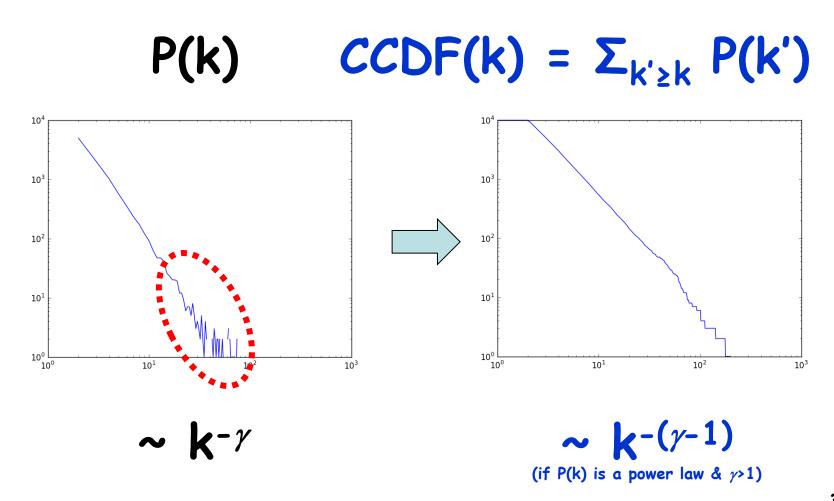


## How it appears



29

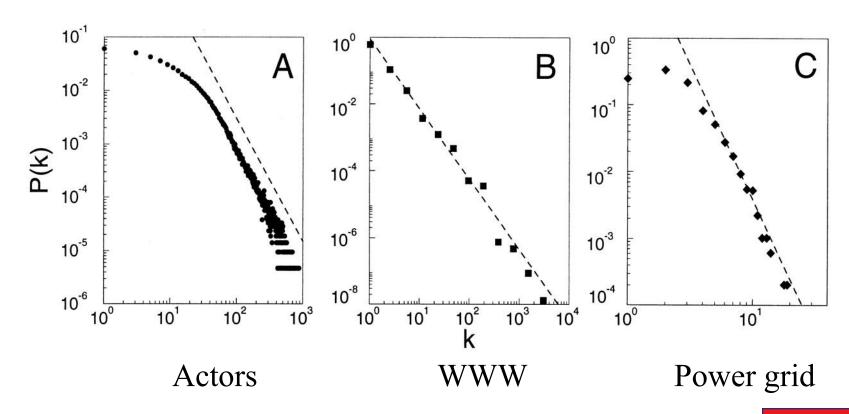
## Complementary Cumulative Distribution Function (CCDF)



 Plot the CCDF of the degree distribution of the Supreme Court Citation network, in a log-log scale

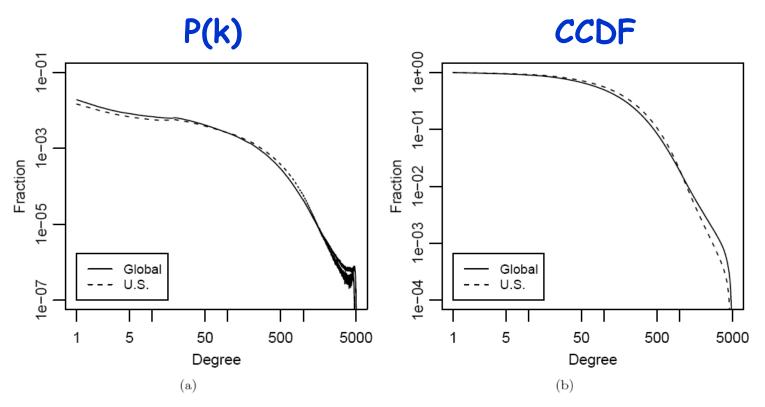
 Compare it with the original degree distribution

# Degree Distributions of Real-World Complex Networks





## Degree distribution of FB



- http://www.facebook.com/note.php?note\_id=1 0150388519243859
- http://arxiv.org/abs/1111.4503

## Properties of those networks

- A small number of well-connected nodes (hubs) significantly reduce the diameter of the entire networks
- Such degree-distribution seems to be dynamically formed and maintained by quite simple, self-organizing mechanisms

#### Barabási-Albert scale-free network model (Barabási & Albert 1999)

- Nodes are sequentially added to the network one by one
- When adding a new node, it is connected to m nodes chosen from the existing network
- Probability for a node to be chosen is proportional to its degree:

$$p_u = deg(u) / \Sigma_v deg(v)$$

- Plot degree distributions (and their CCDFs) of several different random networks described so far
  - Use a large number of nodes, e.g. 10,000

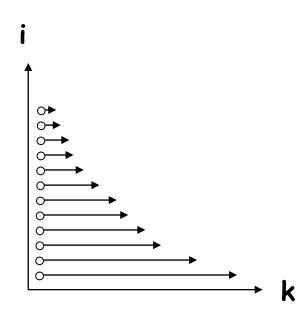
· Compare their properties

## Exercise: Obtaining asymptotic degree distribution of the BA model

- Obtain the power law exponent of Barabasi-Albert growing networks analytically
  - Start with one node
  - Repeat adding a node by connecting it to the network by one link, with degreeproportional preferential attachment
  - Analytically show that  $P(k) \sim k^{-\gamma}$ , and find the value of its exponent  $\gamma$

## Exercise: Obtaining asymptotic degree distribution of the BA model

 Think about how the (expected value of) degree of the i-th node will grow over time



- $\cdot k_i(t=i) = m$
- $k_i(t)$  changes at the rate of  $m(k_i(t)/2mt)$
- Degree distribution:

$$P(k) \sim -di(k)/dk$$

## Degree Correlation

### Degree correlation (assortativity)

 Pearson's correlation coefficient of node degrees across links

$$r = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$$

- X: degree of start node (in / out)
- · Y: degree of end node (in / out)

- Measure degree correlation (assortativity) for the following networks
  - Erdos-Renyi random networks
  - Watts-Strogatz small-world networks
  - Barabasi-Albert scale-free networks
- Repeat measurements multiple times and plot histograms of assortativity

#### Assortative/disassortative networks

| Network                       | n                    | r      |
|-------------------------------|----------------------|--------|
| Physics coauthorship (a)      | 52 909               | 0.363  |
| Biology coauthorship (a)      | 1 520 251            | 0.127  |
| Mathematics coauthorship (b)  | 253 339              | 0.120  |
| Film actor collaborations (c) | 449 913              | 0.208  |
| Company directors (d)         | 7 673                | 0.276  |
| Internet (e)                  | 10 697               | -0.189 |
| World-Wide Web (f)            | 269 504              | -0.065 |
| Protein interactions (g)      | 2 115                | -0.156 |
| Neural network (h)            | 307                  | -0.163 |
| Marine food web (i)           | 134                  | -0.247 |
| Freshwater food web (j)       | 92                   | -0.276 |
| Random graph (u)              |                      | 0      |
| Callaway et al. (v)           | $\delta/(1+2\delta)$ |        |
| Barabási and Albert (w)       |                      | 0      |

Social networks are assortative

Engineered /
biological
networks are
disassortative
(could be just
because of
"structural
cutoffs")

- Measure degree correlations in the Supreme Court Citation Network
  - In-in correlation
  - In-out correlation
  - Out-in correlation
  - Out-out correlation
- Compare the observed results with those of randomized networks