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Describing networks with matrices (1)

• Adjacency matrix

A matrix with rows and columns labeled by 
nodes, where aij represents the number of 
edges between node i and node j

(must be symmetric for undirected graph)

• Incidence matrix (not discussed much)

A matrix with rows labeled by nodes and 
columns labeled by edges, where aij

indicates whether edge j is connected to 
node i (1) or not (0)



3

Describing networks with matrices (2)

• Transition probability matrix

A matrix with rows and columns labeled by 
states (nodes), where aij represents the 
probability of transition from state (node) i 
to state (node) j

• Laplacian matrix

A matrix with rows and columns labeled by 
nodes, where aij represents node degree if 
i = j, or is -1 if node i and node j are 
connected
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Exercise

u1

u3

u2

u4

e1

e5

e2 e3 e4e6

e7

Write adjacency and incidence 
matrices of the (multi-)graph below
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Exercise

• Write an adjacency matrix of the (multi-)graph 
below

u1

u3

u2

u4
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Exercise

• Think about which 
node would be most 
suitable to be a 
source or a sink in a 
network represented 
by the adjacency 
matrix on the right

• Find the maximal 
flow of this network

0 0 3 0 0 0 0 0

0 0 0 0 0 2 4 0

0 0 0 0 0 0 0 0

0 0 0 0 0 3 5 0

0 6 0 4 0 0 0 5

0 0 4 0 0 0 0 0

2 0 7 0 0 0 0 0

2 0 2 2 0 0 0 0



Arithmetic Operations Applied to 
Adjacency Matrices
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Sum and difference of adjacency 
matrices

• One can calculate a sum and a 
difference of adjacency matrices if 
the two graphs have the same number 
of nodes.

A + B
Adjacency matrix 
of graph A

Adjacency matrix 
of graph B

Sum of the two adjacency matrices
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Exercise
• Calculate the sum of and the difference 

between the adjacency matrices of the 
following two graphs, and draw the actual 
shape of the resultant graphs

u1

u3

u2 u4

u1

u3

u2 u4
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Product of adjacency matrices

• Similarly, one can calculate a product
of two adjacency matrices 
(multiplication is not commutative)

A B
Product of the two 

adjacent matrices (1)

B A
Product of the two 

adjacent matrices (2)

≠
not equal
in general

Adjacency matrix 
of graph A

Adjacency matrix 
of graph B

Adjacency matrix 
of graph B

Adjacency matrix 
of graph A
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Exercise
• Calculate two different products of the adjacency 

matrices of the following two graphs, and draw the 
actual shape of the results (Note: such multiplication 
may create directed graphs)

• Then think about what the product means

u1 u6

u2

u3 u4

u5

u1 u6

u2

u3 u4

u5

A B
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Answer

u1 u6

u2

u3 u4

u5

u1 u6

u2

u3 u4

u5

A B B A

• Product X Y indicates a directed graph that maps 
each node to a set of possible destinations that 
may be reached by a two-step move, first 
following Y and then X



Power of Adjacency Matrices
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Try to calculate Ax, 
A2x, A3x, etc.

What does a power of an adjacency 
matrix mean?

u1

u3

u2

u4

0  1  2  1
1  0  0  1
2  0  0  1
1  1  1  1

A = 

An x ?
0
1
0
0
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What does a power of an adjacency 
matrix mean?

u1

u3

u2

u4

0  1  2  1
1  0  0  1
2  0  0  1
1  1  1  1

A = 

An x ?
0
1
0
0

This formula gives a 
set of nodes that can 
be reached in n steps 
from node u2 (and the 
# of such walks)
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What does a power of an adjacency 
matrix mean?

u1

u3

u2

u4

0  1  2  1
1  0  0  1
2  0  0  1
1  1  1  1

A = 

An I = An
Arranging all the 
results starting from 
every node gives a 
power of adjacency 
matrix A

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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A theorem on the power of 
adjacency matrix

• In adjacency matrix A raised to the 
power of n, (An)ij gives the number of 
different walks of length n that 
starts at node j and ends at node i

(This applies to both undirected and directed 
graphs; proof can be easily obtained by using 
mathematical induction with n)
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Exercise

• Calculate how many walks of length two exist 
between u1 and every other node in the graph 
below

u1

u3

u2

u4



Exercise

• Using the power of an adjacency 
matrix, count the number of triangles 
included in:

(a) A complete graph made of 20 nodes

(b) An Erdos-Renyi random network made 
of 1000 nodes with connection probability 
0.01

19
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Determining graph connectivity

• An gives the number of different 
walks of length n between every pair 
of nodes

• Cn = Σk=1~n A
k

gives the number of different walks 
of length n or shorter between every 
pair of nodes
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Determining graph connectivity

• Cn = Σk=1~n A
k

gives the number of different walks 
of length n or shorter between every 
pair of nodes

• In C(# of nodes - 1), every possible path 
in that graph should be counted 
– Because a path must not visit the same 
node more than once
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Determining graph connectivity

• C(# of nodes - 1) = Σk=1~(# of nodes - 1) A
k

• If (C(# of nodes - 1))ij > 0 for all i≠j, 
then there is a path between any pair 
of nodes (and vice versa)

⇒ The original graph is *numerically* 
determined to be a (strongly) 
connected graph
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Exercise
• Show the strong connectivity of the graph below   

by calculating the sum of powers of its adjacency 
matrix

u1

u3

u2

u4



Exercise

• An alternative method is just to 
calculate (A + I)(# of nodes -1) and check 
if all elements have positive values
– Those values no longer show # of paths, 
but still tell us whether there are paths 
between each pair of nodes

• Why does this work?

24
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Transitive closure

• Transitive closure of a graph is a 
graph that contains edge <u, v> 
whenever there is a path from node u 
to node v in the original graph

– Obtained by making all diagonal 
components 0 and all non-diagonal non-
zero components 1 in C(# of nodes - 1)

– Describes accessibility between nodes
– Is a complete graph if the original graph 
is (strongly) connected



Transition Probability Matrix
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Transition probability matrix

• An adjacency matrix of a directed 
graph with normalized weights (i.e., 
sum of all weights of outgoing links is 
always 1 for every node)
– Considers each node as a “state”, and a 
directed link as a stochastic “state 
transition”: Representing a Markov chain

– Can be constructed from a unweighted 
directed graph by assigning normalized 
weights



Exercise

• Create a TPM of the following graph

28

1

2 3

4

5
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• A product of two TPMs is also a TPM

• Always has eigenvalue 1

• |l| <= 1 for all eigenvalues

• If the original network is strongly 
connected (with some additional conditions), 
the TPM has one and only one 
eigenvalue 1 (no degeneration)

Properties of TPMs
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• |l| <= 1 for all eigenvalues

• If the original network is strongly 
connected (with some additional conditions), 
the TPM has one and only one 
eigenvalue 1 (no degeneration)

→ This is a unique dominant eigenvalue;
the probability vector will converge to 
its corresponding eigenvector

TPM and asymptotic probability 
distribution



Exercise

• Obtain eigenvalues and eigenvectors 
of the TPM created in the previous 
exercise

• Calculate Tn (1/5,1/5,1/5,1/5,1/5)T

for large n and see what you will get

31
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Application: Google’s “PageRank”

• Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, 
'The PageRank Citation Ranking: Bringing Order to the Web' 
(1998): http://www-db.stanford.edu/~backrub/pageranksub.ps

• Node: Web pages

• link: Web links

• State: Temporary “importance” of that 
node

• Its coefficient matrix is a transition 
probability matrix that can be obtained by 
dividing each column of the adjacency 
matrix by the number of 1’s in that column.
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Example

s1

s2 s5

s4s3

0  0.5  0   0   1

0   0   0  0.5  0

1  0.5  0   0   0

0   0  0.5  0   0

0   0  0.5 0.5  0

* PageRank is actually calculated by forcedly assigning positive 
non-zero weights to all pairs of nodes in order to make the 
entire network strongly connected
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Interpreting the PageRank network 
as a stochastic system

• State of each node 
can be viewed as a 
relative population 
that are visiting the 
webpage at t

• At next timestep, 
the population will 
distribute to other 
webpages linked from 
that page evenly

s1

s2 s5

s4s3
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PageRank calculation

• Just one dominant eigenvector of the 
TPM of a strongly connected network 
always exists, with l = 1

• This shows the equilibrium distribution 
of the population over WWW

• So, just solve x = Ax and you will 
get the PageRank for all the web 
pages on the World Wide Web
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Exercise

s1

s2 s5

s4s3

0  0.5  0   0   1

0   0   0  0.5  0

1  0.5  0   0   0

0   0  0.5  0   0

0   0  0.5 0.5  0

Calculate the PageRank of each node in the above 
network (the network is already strongly connected so you 
can directly calculate its dominant eigenvector; but also try 
using the NetworkX built-in function for PageRank)
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A note on PageRank

• PageRank algorithm gives non-trivial 
results only for asymmetric networks

• If links are symmetric (undirected), 
the PageRank values will be the same 
as node degrees
– Prove this



Laplacian Matrix



Laplacian matrix

• A matrix with rows and columns 
labeled by nodes, where aij represents 
node degree if i = j, or is -1 if node 
i and node j are connected

L = D – A

D: degree matrix (diagonal elements are 
node degrees; all 0 elsewhere)

39



Exercise

• Write a Laplacian matrix of the graph 
below

40

1

2 3

4

5



Relationship with Laplacians in 
vector calculus

• Related to “Laplacian” in vector 
calculus/PDEs
– It is a negative, discrete version of it

– Similar to a “second-order derivative”, 
defined on a network

– E.g. diffusion on a network:

x(t+1) = x(t) – d L x(t)

41



Relationship with Laplacians in 
vector calculus

Laplacian discretized over 2-D space:

2f = 2f/x2 + 2f/y2

~ ( ft(x+Dx,y)+ft(x-Dx,y)–2ft(x,y) ) / Dx2

+( ft(x,y+Dy)+ft(x,y-Dy)–2ft(x,y) ) / Dy2

= ( ft(x+Dk,y) + ft(x-Dk,y) + ft(x,y+Dk)

+ ft(x,y-Dk) – 4ft(x,y) ) / Dk2

42
Laplacian (graph) ~ - Laplacian (vector calc.)



Properties of a Laplacian

• Has (1, 1, 1, …, 1) as an eigenvector
– Because each row/column adds up to 0

– The corresponding eigenvalue is 0

• All eigenvalues >= 0
– # of zero eigenvalues = # of connected 
components in a graph

– 2nd smallest ev.: “algebraic connectivity”

– Smallest non-zero ev.: “spectral gap”
• Shows how quickly the network can suppress 
non-homogeneous states and synchronize 43



Exercise

• Create an Erdos-Renyi random 
network made of 100 nodes with 
connection probability 0.03

• Obtain its Laplacian matrix and 
calculate its eigenvalues
– See what you find

– Visualize the network and compare the 
results

44



Exercise

• Generate the following network 
topologies w/ similar size and density:
– random graph

– barbell graph

– ring-shaped graph (i.e., degree-2 
regular graph)

• Measure their spectral gaps and see 
how topologies quantitatively affect 
their values

45



Graph Spectrum
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Degree distribution and graph 
spectrum

• Structural characteristics of a large 
complex network can be studied by 
analyzing these distributions

– Similar networks often have similar 
degree distributions and graph spectra

– Degree distribution is structural, intuitive 
and very easy to obtain

– Graph spectrum has strong connection to 
both structure and dynamical behavior
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Graph spectrum

• Distribution of eigenvalues of the 
adjacency matrix of the network

• Undirected graphs have symmetric 
adj. matrices → all real eigenvalues

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

-2, 0, 0, 0, 2

Spectrum

Degenerate 
eigenvalues
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Graph spectral analysis

• Plotting an eigenvalue distribution 
(i.e., histogram)
– Especially effective for visualizing complex 

network data obtained experimentally

– Computing power may be needed to obtain these 
plots for large networks

de Aguiar & Bar-Yam, Phys. Rev. E 71: 016106 (2005)Wigner’s semi-circle law



FYI: Wigner’s semi-circle law

• Eigenvalue distribution density 
(histogram) of a large random real 
symmetric matrix is a semi-circle

50
(Image from Wolfram Mathworld)



FYI: Girko’s circular law

• Eigenvalue distribution of a large 
random real asymmetric matrix is a 
circle in a complex number plane

51
(Image from Wolfram Mathworld)



Community detectability threshold

• Nadakuditi, R. R., 
& Newman, M. E. 
(2012). PRL
108(18), 188701.

52



Exercise

• Obtain spectra of networks made of 
1,000 nodes each
– Random

– Scale-free

– Based on some data

• Plot their density distributions

53
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Exercise

• Obtain the spectrum of the Supreme 
Court Citation network
– Can you do this??

– If you can’t, make a subgraph induced by 
randomly selected 1,000 nodes, and 
conduct the same analysis
• Crude random sampling technique…
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What eigenvalues and eigenvectors 
can tell us

• An eigenvalue tells whether a 
particular “state” of the network 
(specified by its corresponding 
eigenvectors) grows or shrinks by 
interactions between nodes over edges

– Re(l) > 0 ⇒ growing

– Re(l) < 0 ⇒ shrinking



Laplacian spectrum

• Distribution of eigenvalues of the 
Laplacian matrix of the network

56

4 -1 -1 -1 -1
-1  1  0  0  0
-1  0  1  0  0
-1  0  0  1  0
-1  0  0  0  1

0, 1, 1, 1, 5

Spectrum

Degenerate 
eigenvalues



• At least one l is zero

• All the other ls are zero or positive

• # of zero ls corresponds to # of 
connected components in the graph

• 2nd smallest l: “algebraic connectivity”

• Smallest non-zero l: “spectral gap”

57

0 = l1 = l2 = … = lk-1 < lk ≤ lk+1 ≤ … ≤ lN

As many 0’s as # of CC’s
Spectral gap

Review of Laplacian spectrum

Algebraic connectivity



Spectral gap

• Determines how easily a dynamical 
network can get synchronized
– The larger it is (relatively to the largest 
lN), the easier the synchronization is
(Barahona & Pecora, Phys. Rev. Lett. 89: 054101. 2002)

58

I. ER random
II. NW small-world
III.WS small-world
IV. BA scale-free

(Zhan, Chen & Yeung, Physica
A 389: 1779-1788, 2010)



Exercise

• Create a small-world network of 
1,000 nodes with varying p

• Obtain Laplacian spectra of the 
network and find its spectral gap l2

• Plot l2 over p and see how it changes 
as random rewiring rate increases

59


