Topological Analysis

Hiroki Sayama sayama@binghamton.edu

Network data import & export

read_gml

- read_adjlist
- read_edgelist
 - Creates undirected graphs by default;
 use "create_using=NX.DiGraph()" option
 to generate directed graphs

 Import Supreme Court Citation Network Data into NetworkX (http://jhfowler.ucsd.edu/judicial.htm)

- Import as an undirected graph
- Import as a directed graph

Network visualization

- · "nx.draw"
- · Various layout functions
 - Spring, circular, random, spectral, etc.

 For visualization of large-scale networks, use "Gephi"

Gephi

· Network visualization & analysis tool

Basic Properties of Networks

Basic properties of networks

- Number of nodes
- Number of links
- Network density
- Connected components

Network density

- The ratio of # of actual links and # of possible links
 - For an undirected graph:

$$d = |E| / (|V| (|V| - 1) / 2)$$

- For a directed graph:

$$d = |E| / (|V| (|V| - 1))$$

Connected components

Number of connected components = 2

- Measure the following for the (undirected) Supreme Court Citation Network
 - Number of nodes, links
 - Network density
 - Number of connected components
 - Size of the largest connected component
 - Distribution of the sizes of connected components

Shortest path lengths, etc.

- shortest_path
- · shortest_path_length
- · eccentricity
 - Max shortest path length from each node
- · diameter
 - Max eccentricity in the network
- · radius
 - Min eccentricity in the network

 Draw the Karate Club network with its nodes painted with different colors according to their eccentricity

Characteristic path length

- Average shortest path length over all pairs of nodes
- Characterizes how large the world represented by the network is
 - A small length implies that the network is well connected globally

Clustering coefficient

- · For each node:
 - Let n be the number of its neighbor nodes
 - Let m be the number of links among the k neighbors
 - Calculate c = m / (n choose 2)
 - Then $C = \langle c \rangle$ (the average of c)
- · C indicates the average probability for two of one's friends to be friends too
 - A large C implies that the network is well connected locally to form a cluster

- Measure the average clustering coefficients of the following network:
 - Karate Club graph
 - Krackhardt Kite graph
 - Supreme Court Citation network
 - Any other network of your choice
- · Compare them and discuss
 - Can you tell anything meaningful?

Randomizing networks

- Construct a "null model" network samples to test statistical significance of experimentally observed properties
 - Randomized while some network properties are preserved (e.g., degrees)
 - If the observed properties still remain after randomization, they were simply caused by the preserved properties
 - If not, something else was causing them

Randomlization method (1)

- · Double edge swap method
 - 1. Randomly select two links
 - 2. Swap its end nodes
 - (If this swap destroys some network property that should be conserved, cancel it)
 - 3. Repeat above many times

Randomlization method (2)

- · Configuration model (Newman 2003)
 - 1. Cut every link into halves (heads and tails)
 - 2. Randomly connect head to tail
 - This conserves degree sequences
 - (Could result in multiple links and self-loops)

Other randomization methods

Keeping only #'s of nodes and edges

· Degree sequence method

· Expected degree sequence method

- Randomize connections in the Karate
 Club graph
- Measure the average clustering coefficient of the randomized network many times
- Test whether the average clustering coefficient of the original network is significantly non-random or not

Centralities and Coreness

Centrality measures ("B,C,D,E")

- Degree centrality
 - How many connections the node has
- Betweenness centrality
 - How many shortest paths go through the node
- · Closeness centrality
 - How close the node is to other nodes
- · Eigenvector centrality

Degree centrality

· Simply, # of links attached to a node

$$C_D(v) = deg(v)$$

or sometimes defined as

$$C_D(v) = \deg(v) / (N-1)$$

Betweenness centrality

 Prob. for a node to be on shortest paths between two other nodes

$$C_{B}(v) = \frac{1}{(n-1)(n-2)} \sum_{s \neq v, e \neq v} \frac{\# sp_{(s,e,v)}}{\# sp_{(s,e)}}$$

- · s: start node, e: end node
- * $\#sp_{(s,e,v)}$: # of shortest paths from s to e that go though node v
- $\cdot \# sp_{(s,e)}$: total # of shortest paths from s to e
- · Easily generalizable to "group betweenness"

Closeness centrality

 Inverse of an average distance from a node to all the other nodes

$$C_{C}(v) = \frac{n-1}{\sum_{w\neq v} d(v,w)}$$

- · d(v,w): length of the shortest path from v to w
- · Its inverse is called "farness"
- · Sometimes " Σ " is moved out of the fraction (it works for networks that are not strongly connected)
- NetworkX calculates closeness within each connected component

Eigenvector centrality

· Eigenvector of the largest eigenvalue of the adjacency matrix of a network

$$C_{E}(v) = (v-th element of x)$$

 $Ax = \lambda x$

- λ: dominant eigenvalue
- \cdot x is often normalized (|x| = 1)

 Who is most central by degree, betweenness, closeness, eigenvector?

Which centrality to use?

- · To find the most popular person
- To find the most efficient person to collect information from the entire organization
- To find the most powerful person to control information flow within an organization
- · To find the most important person (?)

 Measure four different centralities for all nodes in the Karate Club network and visualize the network by coloring nodes with their centralities

 Create a directed network of any kind and measure centralities

- · Make it undirected and do the same
 - How are the centrality measures affected?

K-core

- A connected component of a network obtained by repeatedly deleting all the nodes whose degree is less than k until no more such nodes exist
 - Helps identify where the core cluster is
 - All nodes of a k-core have at least degree k
 - The largest value of k for which a kcore exists is called "degeneracy" of the network

31

Find the k-core (with the largest k)
 of the following network

Coreness (core number)

- A node's coreness (core number) is c if it belongs to a c-core but not (c+1)-core
- Indicates how strongly the node is connected to the network
- · Classifies nodes into several layers
 - Useful for visualization

- Obtain the k-core (for largest k) of the Karate Club graph and visualize it
- Calculate the coreness of its nodes and plot its histogram

Do the same for the (undirected)
 Supreme Court citation network

Mesoscopic Structures

Motifs

 Small patterns of connections in a network whose number of appearance is significantly higher than those in randomized networks

(from Milo et al., Science 298: 824-827, 2002)

Network	Nodes	Edges	$N_{ m real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{ m real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score	$N_{\rm real}$	$N_{\mathrm{rand}} \pm \mathrm{SD}$	Z score
Gene regulat (transcriptio				Y V V	Feed- forward loop	X Z	√y W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	$7\pm3\\11\pm4$	10 14	203 1812	47 ± 12 300 ± 40	13 41			
Neurons			-	Υ Ψ Ψ Z	Feed- forward loop	X	√y w	Bi-fan	Y _N	ν ^z	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X W Y W Z	Three chain	Y	$ u^{\mathbf{z}} $	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184 181	3120 ± 50 1020 ± 20 450 ± 10 82 ± 4 235 ± 12 150 ± 7 130 ± 7	2.1 7.2 NS NS 3.6 5.5 7.4	7295 1357 382 26 181 397 267	2220 ± 210 230 ± 50 130 ± 20 5 ± 2 80 ± 20 80 ± 25 30 ± 7	25 23 12 8 5 13 32			
Electronic circuits				·X	Feed-	X	Y	Bi-fan	// X	ί μ	Bi-
(forward logic chips)		$\downarrow \qquad \qquad$		forward loop	Z W			Y Z Z		parallel	
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)			<i>Y</i> ←	- z	Three- node feedback loop	X	√y W	Bi-fan	x- ↑ z ≤	→ Y ↓ ✓ ✓ W	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	$\begin{array}{c} 1 \pm 1 \\ 1 \pm 1 \\ 1 \pm 1 \end{array}$	9 18 38	4 10 22	1 ± 1 1 ± 1 1 ± 1	3.8 10 20	5 11 23	1 ± 1 1 ± 1 1 ± 1	5 11 25
World Wide Web		X Y Y Z		Feedback with two mutual dyads		\Rightarrow z	Fully connected triad	√ Y ←	<u> </u>	Uplinked mutual dyad	
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	1e4 ± 2e2	5000

Unfortunately...

- Motif counting is computationally costly and still being actively studied, so NetworkX does not have built-in motif counting tools
- · One should use specialized software
 - "mfinder" developed at Weizmann Institute of Science
 - "iGraph" in R / Python also has motifications

Community

- A subgraph of a network within which nodes are connected to each other more densely than to the outside
 - Still defined vaguely...
 - Various detection algorithms proposed
 - · K-clique percolation
 - · Hierarchical clustering
 - · Girvan-Newman algorithm
 - Modularity maximization (e.g., Louvain method)

K-clique percolation method

- 1. Choose a value for k (e.g., 4)
- 2. Find all k-cliques (complete subgraphs of k-nodes) in the network
- 3. Assume that two cliques belong to the same community if they share k-1 nodes ("k-clique percolation")
- This methods detect communities that potentially overlap

 Find communities in the following network by 3-clique percolation

- Generate a random network made of 100 nodes and 250 links
- Calculate node positions using spring layout
- Visualize the original network & its kclique communities (for k = 3 or 4) using the same positions

- Find k-clique communities in the (undirected) Supreme Court Citation Network
- Start with large k (say 100) and decrease it until you find a meaningful community

Non-overlapping communities

- Other methods find ways to assign ALL the nodes to one and only one community
 - Community structure is a mapping from a node ID to a community ID
 - No community overlaps
 - No "stray" nodes

Modularity

 A quantity that characterizes how good a given community structure is in dividing the network

$$Q = \frac{|E_{in}| - |E_{in-R}|}{|E|}$$

- \cdot $|E_{in}|$: # of links connecting nodes that belong to the same community
- $\cdot |E_{in-R}|$: Estimated $|E_{in}|$ if links were random

Community detection based on modularity

- The Louvain method
 - Heuristic algorithm to construct communities that optimize modularity
 - Blondel et al. J. Stat. Mech. 2008 (10): P10008
- Python implementation by Thomas Aynaud available at:
 - https://bitbucket.org/taynaud/pythonlouvain/

 Detect community structure in the (undirected) Supreme Court Citation Network using the Louvain method

- · Measure the modularity achieved
- · How many communities are detected?
- · How large is each community?

Block model

- Create a new, "coarse" network by aggregating nodes within each community into a meta-node
 - Meta-nodes contain original communities
 - Meta-edge weights show connections b/w communities

- Create a block model of some realworld network by using its communities as partitions
- Visualize the block model with edge widths varied according to connections between communities

Hierarchy

- Many real-world complex networks have many layers of modular structures forming a hierarchy
 - Community structures are not singlescale, but multiscale
 - Similar to fractals

Deterministic scale-free networks

- · E.g. Dorogovtsev, Goltsev & Mendes 2002
 - Scale-free degree distribution
 - But still high clustering coefficients

Clustering coefficients and k

 Deterministic scale-free networks show another scaling law

C(k) plots of real-world networks

 Plot C(k) for several real-world network data and see if the inverse scaling law between k and C(k) appears or not