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Topological Analysis 



Network data import & export 

• read_gml 
 

• read_adjlist 
• read_edgelist 

– Creates undirected graphs by default; 
use “create_using=NX.DiGraph()” option 
to generate directed graphs 
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Exercise 

• Import Supreme Court Citation 
Network Data into NetworkX 
(http://jhfowler.ucsd.edu/judicial.htm) 
 
– Import as an undirected graph 
 

– Import as a directed graph 
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Network visualization 

• “nx.draw” 
 

• Various layout functions 
– Spring, circular, random, spectral, etc. 

 
 

• For visualization of large-scale 
networks, use “Gephi” 
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Gephi 

• Network visualization & analysis tool 
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Basic Properties of Networks 



Basic properties of networks 

• Number of nodes 
• Number of links 
• Network density 

 

• Connected components 
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Network density 

• The ratio of # of actual links and # 
of possible links 

 

– For an undirected graph: 
  d = |E| / ( |V| (|V| - 1) / 2 ) 

 

– For a directed graph: 
  d = |E| / ( |V| (|V| - 1) ) 
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Exercise 

• Measure the following for the 
(undirected) Supreme Court Citation 
Network 
– Number of nodes, links 
– Network density 
– Number of connected components 
– Size of the largest connected component 
– Distribution of the sizes of connected 
components 
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Shortest path lengths, etc. 

• shortest_path 
• shortest_path_length 
• eccentricity 

– Max shortest path length from each node 
• diameter 

– Max eccentricity in the network 
• radius 

– Min eccentricity in the network 
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Exercise 

• Draw the Karate Club network with its 
nodes painted with different colors 
according to their eccentricity 
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Characteristic path length 

• Average shortest path length over all 
pairs of nodes 

• Characterizes how large the world 
represented by the network is 
– A small length implies that the network is 
well connected globally 
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Clustering coefficient 
• For each node: 

– Let n be the number of its neighbor nodes 
– Let m be the number of links among the k 
neighbors 

– Calculate c = m / (n choose 2) 
 Then C = <c>  (the average of c) 
• C indicates the average probability for 
two of one’s friends to be friends too 
– A large C implies that the network is well 
connected locally to form a cluster 



Exercise 

• Measure the average clustering 
coefficients of the following network: 
– Karate Club graph 
– Krackhardt Kite graph 
– Supreme Court Citation network 
– Any other network of your choice 

 

• Compare them and discuss 
– Can you tell anything meaningful? 
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Randomizing networks 

• Construct a “null model” network 
samples to test statistical significance 
of experimentally observed properties 
– Randomized while some network 
properties are preserved (e.g., degrees) 

– If the observed properties still remain 
after randomization, they were simply 
caused by the preserved properties 

– If not, something else was causing them 
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Randomlization method (1) 
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• Double edge swap method 
 

1. Randomly select two links 
2. Swap its end nodes 

• (If this swap destroys some 
network property that should  
be conserved, cancel it) 

3. Repeat above many times 
 



Randomlization method (2) 

• Configuration model (Newman 2003) 
 

1. Cut every link into 
halves (heads and 
tails) 

2. Randomly connect 
head to tail 
• This conserves 

degree sequences 
• (Could result in multiple 

links and self-loops) 
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Other randomization methods 

• Keeping only #’s of nodes and edges 
 

• Degree sequence method 
 

• Expected degree sequence method 
 

19 



Exercise 

• Randomize connections in the Karate 
Club graph 

• Measure the average clustering 
coefficient of the randomized network 
many times 

• Test whether the average clustering 
coefficient of the original network is 
significantly non-random or not 
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Centralities and Coreness 
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Centrality measures (“B,C,D,E”) 

• Degree centrality 
– How many connections the node has 

• Betweenness centrality 
– How many shortest paths go through the 
node 

• Closeness centrality 
– How close the node is to other nodes 

• Eigenvector centrality 
 



Degree centrality 

• Simply, # of links attached to a node 
 

  CD(v) = deg(v) 
 

 or sometimes defined as 
 

  CD(v) = deg(v) / (N-1) 
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Betweenness centrality 

• Prob. for a node to be on shortest 
paths between two other nodes 

 

CB(v)=       Σs≠v,e≠v 
 
• s: start node, e: end node 
• #sp(s,e,v): # of shortest paths from s to e that 
go though node v 

• #sp(s,e): total # of shortest paths from s to e 
• Easily generalizable to “group betweenness” 24 

#sp(s,e,v) 

#sp(s,e) 

1 
(n-1)(n-2) 



Closeness centrality 

• Inverse of an average distance from a 
node to all the other nodes 

 

  CC(v) = 
 

 

• d(v,w): length of the shortest path from v to w 
• Its inverse is called “farness” 
• Sometimes “Σ” is moved out of the fraction (it works for 

networks that are not strongly connected) 
• NetworkX calculates closeness within each connected 

component 
25 
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Eigenvector centrality 

• Eigenvector of the largest eigenvalue 
of the adjacency matrix of a network 

 

  CE(v) = (v-th element of x) 
  Ax = λx 

 
•  λ: dominant eigenvalue 
• x is often normalized (|x| = 1) 
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Exercise 

• Who is most central by degree, 
betweenness, closeness, eigenvector? 
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Which centrality to use? 

• To find the most popular person 
• To find the most efficient person to 
collect information from the entire 
organization 

• To find the most powerful person to 
control information flow within an 
organization 

• To find the most important person (?) 
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Exercise 

• Measure four different centralities 
for all nodes in the Karate Club 
network and visualize the network by 
coloring nodes with their centralities 
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Exercise 

• Create a directed network of any kind 
and measure centralities 

 

• Make it undirected and do the same 
 

– How are the centrality measures 
affected? 
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K-core 

• A connected component of a network 
obtained by repeatedly deleting all 
the nodes whose degree is less than k 
until no more such nodes exist 
– Helps identify where the core cluster is 
– All nodes of a k-core have at least 
degree k 

– The largest value of k for which a k-
core exists is called “degeneracy” of the 
network 
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Exercise 

• Find the k-core (with the largest k) 
of the following network 
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Coreness (core number) 

• A node’s coreness (core number) is c 
if it belongs to a c-core but not 
(c+1)-core 

 

• Indicates how strongly the node is 
connected to the network 

• Classifies nodes into several layers 
– Useful for visualization 
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Exercise 

• Obtain the k-core (for largest k) of 
the Karate Club graph and visualize it 

• Calculate the coreness of its nodes 
and plot its histogram  
 

• Do the same for the (undirected) 
Supreme Court citation network  
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Mesoscopic Structures 



Motifs 

• Small patterns of connections in a 
network whose number of appearance 
is significantly higher than those in 
randomized networks 

36 (from Milo et al., Science 298: 824-827, 2002) 
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(from
 M

ilo et al., Science 298: 824-827, 2002) 



Unfortunately… 

• Motif counting is computationally 
costly and still being actively studied, 
so NetworkX does not have built-in 
motif counting tools 

• One should use specialized software 
– “mfinder” developed at Weizmann 
Institute of Science 

– “iGraph” in R / Python also has motif 
counting functions 
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Community 

• A subgraph of a network within which 
nodes are connected to each other 
more densely than to the outside 
– Still defined vaguely…  
– Various detection 
algorithms proposed 
• K-clique percolation 
• Hierarchical clustering 
• Girvan-Newman algorithm 
• Modularity maximization 
(e.g., Louvain method) 39 (diagram from Wikipedia) 



K-clique percolation method 

1. Choose a value for k (e.g., 4) 
2. Find all k-cliques (complete subgraphs 

of k-nodes) in the network 
3. Assume that two cliques belong to 

the same community if they share k-
1 nodes (“k-clique percolation”) 

 

• This methods detect communities 
that potentially overlap 
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Exercise 

• Find communities in the following 
network by 3-clique percolation 
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Exercise 

• Generate a random network made of 
100 nodes and 250 links 

• Calculate node positions using spring 
layout 

• Visualize the original network & its k-
clique communities (for k = 3 or 4) 
using the same positions 
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Exercise 

• Find k-clique communities in the 
(undirected) Supreme Court Citation 
Network 

 

• Start with large k (say 100) and 
decrease it until you find a meaningful 
community 
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Non-overlapping communities 

• Other methods find ways to assign 
ALL the nodes to one and only one 
community 

 

– Community structure is a mapping from a 
node ID to a community ID 

– No community overlaps 
– No “stray” nodes 
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Modularity 

• A quantity that characterizes how 
good a given community structure is in 
dividing the network 

 
  Q = 

 
 

• |Ein|: # of links connecting nodes that belong 
 to the same community 

• |Ein-R|: Estimated |Ein| if links were random   
45 

|Ein|-|Ein-R| 
|E| 



Community detection based on 
modularity 

• The Louvain method 
– Heuristic algorithm to construct 
communities that optimize modularity  
• Blondel et al. J. Stat. Mech. 2008 (10): 
P10008 

• Python implementation by Thomas 
Aynaud available at: 
– https://bitbucket.org/taynaud/python-
louvain/ 
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https://bitbucket.org/taynaud/python-louvain/
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Exercise 

• Detect community structure in the 
(undirected) Supreme Court Citation 
Network using the Louvain method 
 

• Measure the modularity achieved 
• How many communities are detected? 
• How large is each community? 
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Block model 

• Create a new, “coarse” network by 
aggregating nodes within each 
community into a meta-node 
– Meta-nodes contain original communities 
– Meta-edge weights show connections b/w 
communities 
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Exercise 

• Create a block model of some real-
world network by using its 
communities as partitions 

 

• Visualize the block model with edge 
widths varied according to connections 
between communities 
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Hierarchy 

• Many real-world complex networks 
have many layers of modular 
structures forming a hierarchy 
– Community structures are not single-
scale, but multiscale 

– Similar to fractals 
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Deterministic scale-free networks 

• E.g. Dorogovtsev, Goltsev & Mendes 2002 
 
– Scale-free 

degree 
distribution 
 

– But still high 
clustering 
coefficients 
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Clustering coefficients and k 

• Deterministic scale-free networks 
show another scaling law 

 (Dorogovtsev et al. 2002; 
Ravasz & Barabasi 2003) 

 
 

  C(k) ~ k-1 

52 
(from Ravasz & Barabasi 2003) 

Deterministic 
(hierarchical) 
scale-free 
network 

BA scale-free 
network 



C(k) plots of real-world networks 

53 
(from Ravasz & Barabasi 2003) 

Actor network Semantic web 

WWW Internet 



Exercise 

• Plot C(k) for several real-world 
network data and see if the inverse 
scaling law between k and C(k) 
appears or not 
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