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Small-World Phenomenon



“"Bacon Number”

- BN = 1 for those who co-starred with
Kevin Bacon in a film

- BN = 2 for those who co-starred with
actors/actresses with BN=1

* Mostly BN <= 3 Il
* The largest finite BN = 8 |




“"Erdos Number”

- EN = 1 for those who co-authored a
paper with a Hungarian mathematician
Paul Erdos (1913-1996)

* EN = 2 for those who
co-authored a paper with

authors with EN=1

* Mostly EN <= 7 |l
* The largest finite EN = 13 |l

FYI - Hiroki's EN=4 (by Bing/Microsoft Academic Search)



3.5 degrees of separation in FB
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Figure 1. Estimated average degrees of separation between all people on Facebook. The average person is connected
to every other person by an average of 3.57 steps. The majority of people have an average between 3 and 4 steps.

* https://research.facebook.com/blog/three-and-a-
half -degrees-of -separation/ 5




"Small-world” phenomenon

- Most real-world networks are
remarkably “small”

- Despite a huge number of nodes involved

- Even if connections are relatively sparse

* Why?



Random Networks



Classical explanation:
Erdos-Rényi random network model

- A network made of N nodes

* Each node pair is connected randomly
and independently with probability p

+ A small characteristic path length is
realized because of randomness

- Number of nodes reachable from a single
node within k steps increases
exponentially with k



Exercise

+ Create and plot a few ER random
networks using NetworkX

* Measure their properties
- Network density
- Characteristic path length
- Clustering coefficient
- Degree distribution
- efc.



Limitation of ER networks

* ER random networks have very few
loops or local clusters if connection
probability is small

- Real-world networks are often
clustered with a lot of local
connections, forming “cliques”, while
maintaining very small characteristic
path lengths
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ER networks with partitions:
Stochastic block models

* Generates random networks from the
connection density matrix for blocks
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Exercise

+ See the community information in the
Karate Club network data

* Create its block model using the
blockmodel() function

» Construct a stochastic block model
using the connection probabilities
obtained above (this needs coding)

+ Compare the original network and the
randomly generated one
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Small-World Networks



Explanation (1):
Small-world network

+ D. J. Watts & S. H. Strogatz,
Collective dynamics of ‘small-world’
networks, Nature 393:440-442, 1998.

* A network that is mostly locally
connected but with a few global
connections

+ A SW network generally has a very
small characteristic path length
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Experiment by Watts & Strogatz

* Moving from a regular, locally
connected graph to a random, globally
connected graph

Reqgular =mall-world

Increasing randomness



Exercise

* Create a ring-shaped network made
of n nodes

- Connect each node to k nearest
neighbors

* Randomly rewire edges one-by-one

* Monitor what happens to the
characteristic path length and the
average clustering coefficient
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The “small-world” property

* This network is small, though still locally connected
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Why such a small world?

=mall-world

The existence of a
few “far leaping”
links significantly
decreases the length
of shortest paths
for most pairs of
nodes
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Small-world property found in
world networks

real-

L tual I—random C tual
Film actors 3.65 2.99 0.79
Power grid 18.7 124 0.080
C. elegans 2.65 2.25 0.28

fa-gﬂl ﬂ

0.005
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Exercise

* Create and plot several WS small-
world networks using NetworkX

* Measure their properties

+ Study how the characteristic path
length and the clustering coefficient
of WS networks change with
increasing rewiring probability (for the
same number of nodes, e.g. n=100)
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Degree Distribution



Degree distribution

P(k) = Prob. (or #) of nodes with
degree k

* Gives a rough profile of how the
connectivity is distributed within the
network

2, P(k) = 1 (or total # of nodes)
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Degree distribution of ER networks

* Degree distribution of an ER random
network is given by a binomial
distribution:

P(k) = n-1Cic P* (1-p)N-1-k

* With large N (with fixed Np), it
approaches a Poisson distribution:

P(k) ~ (Np)< e-Np / K
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Exercise

* Obtain the degree distribution of the
Supreme Court Citation network (after
making it into undirected)

* Plot the distribution in a linear scale
* Plot the distribution in a log-log scale
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Exercise

* Create an arbitrary complex network
of your choice, with at least 10,000
nodes in it

* Plot its degree distribution

25



Scale-Free Networks



Explanation (2):
Scale-free network

* A network whose degree distribution
obeys a power law

* More general and natural than the
small-world network model
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Power law degree distribution

) A few well-connected nodes,
P(k) ~ k- a lot of poorly connected nodes

P(K) log AP(k)

-\

Linear in log-log plot

> log k

- K

-> No characteristic scale
Scale-free network

(Scale-free networks)
28



How it appears
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Complementary Cumulative
Distribution Function (CCDF)

P(k)

CCDF(k) = Zk'zk P(k')

~ k"(?"‘ 1)

(if P(k) is a power law & »>1)
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Exercise

* Plot the CCDF of the degree
distribution of the Supreme Court
Citation network, in a log-log scale

+ Compare it with the original degree
distribution

31



Degree Distributions of Real-World
Complex Networks
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Degree distribution of FB
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* http://www.facebook.com/note.php?note id=1
0150388519243859

* http://arxiv.org/abs/1111.4503 33




Properties of those networks

- A small number of well-connected
nodes (hubs) significantly reduce the
diameter of the entire networks

* Such degree-distribution seems to be
dynamically formed and maintained by
quite simple, self-organizing
mechanisms
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Barabasi-Albert scale-free network
model (Barabasi & Albert 1999)

* Nodes are sequentially added to the
network one by one

* When adding a new node, it is
connected to m nodes chosen from the
existing network

* Probability for a node to be chosen is
proportional to its degree:

p, = deg(u) / Z, deg(v)
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Exercise

* Plot degree distributions (and their
CCDFs) of several different random
networks described so far

- Use a large number of nodes, e.qg.
10,000

+ Compare their properties

36



Exercise: Obtaining asymptotic
degree distribution of the BA model

» Obtain the power law exponent of
Barabasi-Albert growing networks
analytically

- Start with one node

- Repeat adding a node by connecting it to
the network by one link, with degree-
proportional preferential attachment

- Analytically show that P(k) ~ k¥, and

find the value of its exponent y
37



Exercise: Obtaining asymptotic
degree distribution of the BA model

» Think about how the (expected value
of) degree of the i-th node will grow
over time

i * ki(t=i) = m

* ki(t) changes at the
rate of m(k.(t)/2mt)

* Degree distribution:
— .k P(k) ~ -di(k)/dk

ooomﬁjie
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Degree Correlation



Degree correlation (assortativity)

- Pearson'’s correlation coefficient of
node degrees across links

Cov(X, Y)
Oy Oy

r =

+ X: degree of start node (in / out)
* Y: degree of end node (in / out)

40



Exercise

* Measure degree correlation
(assortativity) for the following
networks
- Erdos-Renyi random networks
- Watts-Strogatz small-world networks
- Barabasi-Albert scale-free networks

* Repeat measurements multiple times
and plot histograms of assortativity
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Assortative/disassortative networks
Network n r
Physics coauthorship (a) 52909 0363 | .
Biology coauthorship (a) 1520251 0.127 Social
Mathematics coauthorship (b) 253339 0.120 networks are
Film actor collaborations (c¢) 449913 0.208 assortative
Company directors (d) 7673 0.276
Internet (e) 10697 —0.189
World-Wide Web (f) 269504 —0.065 Engineered /
Protein interactions (g) 2115 —0.156 biological
Neural network (h) 307 —0.163 networks are
Marine food web (i) 134 —0.247 disassortative
Freshwater food web () 02 —(0.276 .
- . ‘ ) — (could be just
andom graph (u
Callaway et al. (v) S5/(1 + 26) !?ecause of
Barabasi and Albert (w) 0 structural
cutoffs”)

(from Newman, M. E. J., Phys. Rev. Lett. 89: 208701, 2002)
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Exercise

* Measure degree correlations in the
Supreme Court Citation Network
- In-in correlation
- In-out correlation
- Out-in correlation
- Out-out correlation

+ Compare the observed results with
those of randomized networks
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