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Centralities and Coreness
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Centrality measures (“B,C,D,E”)

• Degree centrality
– How many connections the node has

• Betweenness centrality
– How many shortest paths go through the 
node

• Closeness centrality
– How close the node is to other nodes

• Eigenvector centrality



Degree centrality

• Simply, # of links attached to a node

CD(v) = deg(v)

or sometimes defined as

CD(v) = deg(v) / (N-1)
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Betweenness centrality

• Prob. for a node to be on shortest 
paths between two other nodes

CB(v)= Σs≠v,e≠v

• s: start node, e: end node
• #sp(s,e,v): # of shortest paths from s to e that 
go though node v

• #sp(s,e): total # of shortest paths from s to e
• Easily generalizable to “group betweenness” 5

#sp(s,e,v)

#sp(s,e)
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Closeness centrality

• Inverse of an average distance from a 
node to all the other nodes

CC(v) =

• d(v,w): length of the shortest path from v to w
• Its inverse is called “farness”
• Sometimes “Σ” is moved out of the fraction (it works for 

networks that are not strongly connected)
• NetworkX calculates closeness within each connected 

component
6
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Eigenvector centrality

• Eigenvector of the largest eigenvalue 
of the adjacency matrix of a network

CE(v) = (v-th element of x)
Ax = x

• : dominant eigenvalue
• x is often normalized (|x| = 1)
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Exercise

• Who is most central by degree, 
betweenness, closeness, eigenvector?
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Which centrality to use?

• To find the most popular person
• To find the most efficient person to 
collect information from the entire 
organization

• To find the most powerful person to 
control information flow within an 
organization

• To find the most important person (?)
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Exercise

• Measure four different centralities 
for all nodes in the Karate Club 
network and visualize the network by 
coloring nodes with their centralities
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Exercise

• Create a directed network of any kind 
and measure centralities

• Make it undirected and do the same

– How are the centrality measures 
affected?
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K-core

• A connected component of a network 
obtained by repeatedly deleting all 
the nodes whose degree is less than k 
until no more such nodes exist
– Helps identify where the core cluster is
– All nodes of a k-core have at least 
degree k

– The largest value of k for which a k-
core exists is called “degeneracy” of the 
network
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Exercise

• Find the k-core (with the largest k) 
of the following network
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Coreness (core number)

• A node’s coreness (core number) is c 
if it belongs to a c-core but not 
(c+1)-core

• Indicates how strongly the node is 
connected to the network

• Classifies nodes into several layers
– Useful for visualization
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Exercise

• Obtain the k-core (for largest k) of 
the Karate Club graph and visualize it

• Calculate the coreness of its nodes 
and plot its histogram 

• Do the same for the (undirected) 
Supreme Court citation network 
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Mesoscopic Structures



Motifs

• Small patterns of connections in a 
network whose number of appearance 
is significantly higher than those in 
randomized networks

17(from Milo et al., Science 298: 824-827, 2002)
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(from
 M

ilo et al., Science 298: 824-827, 2002)



Unfortunately…

• Motif counting is computationally 
costly and still being actively studied, 
so NetworkX does not have built-in 
motif counting tools

• One should use specialized software
– “mfinder” developed at Weizmann 
Institute of Science

– “iGraph” in R / Python also has motif 
counting functions
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Community
• A subgraph of a network within which 
nodes are connected to each other 
more densely than to the outside
– Still defined vaguely… 
– Various detection
algorithms proposed
• K-clique percolation
• Hierarchical clustering
• Girvan-Newman algorithm
• Modularity maximization
(e.g., Louvain method) 20(diagram from Wikipedia)



K-clique percolation method

1. Choose a value for k (e.g., 4)
2. Find all k-cliques (complete subgraphs 

of k-nodes) in the network
3. Assume that two cliques belong to 

the same community if they share k-
1 nodes (“k-clique percolation”)

• This methods detect communities 
that potentially overlap
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Exercise

• Find communities in the following 
network by 3-clique percolation
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Exercise

• Generate a random network made of 
100 nodes and 250 links

• Calculate node positions using spring 
layout

• Visualize the original network & its k-
clique communities (for k = 3 or 4) 
using the same positions
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Exercise

• Find k-clique communities in the 
(undirected) Supreme Court Citation 
Network

• Start with large k (say 100) and 
decrease it until you find a meaningful 
community
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Non-overlapping communities

• Other methods find ways to assign 
ALL the nodes to one and only one 
community

– Community structure is a mapping from a 
node ID to a community ID

– No community overlaps
– No “stray” nodes
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Modularity

• A quantity that characterizes how 
good a given community structure is in 
dividing the network

Q =

• |Ein|: # of links connecting nodes that belong 
to the same community

• |Ein-R|: Estimated |Ein| if links were random  
26

|Ein|-|Ein-R|
|E|



Community detection based on 
modularity

• The Louvain method
– Heuristic algorithm to construct 
communities that optimize modularity 
• Blondel et al. J. Stat. Mech. 2008 (10): 
P10008

• Python implementation by Thomas 
Aynaud available at:
– https://bitbucket.org/taynaud/python-
louvain/
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Exercise

• Detect community structure in the 
(undirected) Supreme Court Citation 
Network using the Louvain method

• Measure the modularity achieved
• How many communities are detected?
• How large is each community?
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Block model
• Create a new, “coarse” network by 
aggregating nodes within each 
community into a meta-node
– Meta-nodes contain original communities
– Meta-edge weights show connections b/w 
communities
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Exercise

• Create a block model of some real-
world network by using its 
communities as partitions

• Visualize the block model with edge 
widths varied according to connections 
between communities
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Hierarchy

• Many real-world complex networks 
have many layers of modular 
structures forming a hierarchy
– Community structures are not single-
scale, but multiscale

– Similar to fractals
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Deterministic scale-free networks

• E.g. Dorogovtsev, Goltsev & Mendes 2002

– Scale-free
degree
distribution

– But still high
clustering
coefficients
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Clustering coefficients and k

• Deterministic scale-free networks 
show another scaling law
(Dorogovtsev et al. 2002;
Ravasz & Barabasi 2003)

C(k) ~ k-1

33
(from Ravasz & Barabasi 2003)
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C(k) plots of real-world networks
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(from Ravasz & Barabasi 2003)

Actor network Semantic web

WWW Internet



Exercise

• Plot C(k) for several real-world 
network data and see if the inverse 
scaling law between k and C(k) 
appears or not
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