Topological Analysis (2)

Hiroki Sayama
sayama@binghamton.edu



Centralities and Coreness



Centrality measures ("B,C,D,E")

* Degree centrality
- How many connections the node has

+ Betweenness centrality

- How many shortest paths go through the
node

+ Closeness centrality
- How close the node is to other nodes

- Eigenvector centrality



Degree centrality

+ Simply, # of links attached to a node

Cp(v) = deg(v)

or sometimes defined as
Co(v) = deg(v) / (N-1)



Betweenness centrality

* Prob. for a node to be on shortest
paths between two other nodes

1 #sp
C - )X (s,e,v)
B(v) (n_ 1)("-2) s#Zv,e?v #SP(s,e)

* s: start node, e: end node

* #5p(s o vyt # of shortest paths from s to e that
go though node v

* #sp(s ): total # of shortest paths from s to e
* Easily generalizable to "group betweenness” 5




Closeness centrality

» Inverse of an average distance from a
node to all the other nodes

Cc(v) = n-!

2., div,w)

* d(v,w): length of the shortest path from v to w
- Its inverse is called “farness”

- Sometimes X" is moved out of the fraction (it works for
networks that are not strongly connected)

- NetworkX calculates closeness within each connected
component
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Eigenvector centrality

- Eigenvector of the largest eigenvalue
of the adjacency matrix of a network

Ce(v) = (v-th element of x)
AX = AX

*+ A: dominant eigenvalue
- x is often normalized (|x| = 1)



Exercise

* Who is most central by degree,
betweenness, closeness, eigenvector?

Heather lke Jane




Which centrality to use?

» To find the most popular person

» To find the most efficient person to
collect information from the entire
organization

» To find the most powerful person to
control information flow within an
organization

+ To find the most important person (?)



Exercise

* Measure four different centralities
for all nodes in the Karate Club
network and visualize the network by
coloring nodes with their centralities

10



Exercise

* Create a directed network of any kind
and measure centralities

- Make it undirected and do the same

- How are the centrality measures
affected?
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K-core

+ A connected component of a network
obtained by repeatedly deleting all
the nodes whose degree is less than k
until no more such nodes exist
- Helps identify where the core cluster is
- All nodes of a k-core have at least

degree k

- The largest value of k for which a k-
core exists is called "degeneracy” of the

network L



Exercise

* Find the k-core (with the largest k)
of the following network
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Coreness (core number)

+ A node's coreness (core number) is ¢
if it belongs to a c-core but not
(c+1)-core

» Indicates how strongly the node is
connected to the network

+ Classifies nodes into several layers
- Useful for visualization
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Exercise

+ Obtain the k-core (for largest k) of
the Karate Club graph and visualize it

- Calculate the coreness of its nodes
and plot its histogram

- Do the same for the (undirected)
Supreme Court citation network
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Mesoscopic Structures



Motifs

- Small patterns of connections in a
network whose number of appearance
is significantly higher than those in
randomized networks

sz 2
DRt

(from Milo et al., Science 298: 824-827, 2002) 17



Network Nodes Edges | Myeal Mand=SP  Zscore | Npeal Npand 5P Zscore | Neeal Neand TSP Zscore
Gene regulation X Feed- X b 4 Bi-fan
(transcription) A forward M
Y loop
\ Z w
Z
E. coli 424 519 40 7+3 10 203 47+12 13
S. cerevisiae® 685 1,052 70 11+4 14 1812 300+ 40 41
Neurons X Feed- X Y Bi-fan X Bi-
v forward kN parallel
\I/ loop e = ‘l-& %Z
7z W
C. eleganst 252 500 125 90 + 10 3.7 127 55+13 53 227 35+10 20
Food webs X Three X Bi-
3 chain 2\ parallel
Y Y Z
\% N ¥
Z W
Little Rock 92 984 3219 3120+ 50 7295 2220+ 210 25
Ythan 83 391 1182 1020 + 20 7.2 1357 230+ 50 23
St. Martin 42 205 469 450+ 10 NS 382 130 + 20 12
Chesapeake 31 67 80 82+4 NS 26 542 8
Coachella 29 243 279 235+ 12 36 181 80+ 20 5
Skipwith 25 189 184 1507 5.5 397 80 £ 25 13
B. Brook 25 104 181 130 + 7 7.4 267 30+7 32
Electronic circuits X Feed- X Y Bi-fan ¥ X | Bi-
(forward logic chips) \f forward v 7 parallel
: loo :
V ’ Z w N “_%
¥/
s15850 10,383 14,240 | 424 242 285 1040 1 +1 1200 480 241 335
538584 20,717 34,204 § 413 10£3 120 1739 6+2 800 711 9+2 320
s38417 23,843 33,601 | 612 32 400 2404 1£1 2550 531 242 340
59234 5.844 8,197 J 211 241 140 754 1+1 1050 209 1+1 200
513207 8.651 11.831 § 403 2+1 225 4445 1+1 4950 264 2+1 200
Electronic circuits X Three- h. 4 Y Bi-lan X——=>Y Four-
(digital fractional multipliers) f \ node node
feedback feedback
Y<— Z loop Z W Z<—W loop
s208 122 189 10 1+1 9 4 1 +1 38 5 1+1 5
5420 252 399 20 1+1 18 10 1+1 10 11 1+1 11
s838% 512 519 40 1+1 38 22 1+1 20 23 1+1 25
World Wide Web ‘—k Feedback X Fully X Uplinked
\l{ with two Z N connected /’ [\ mutual
* mutual @ i triad y<—> 7 dyad
v dyads X Z .
7 ]
nd.edu§ 325,729 1.46e6 § 1.1e5 2e3 + le2 800 6.8¢6 Sed+de2 15,000 1.2¢6 leq + 2e2 5000

862 22U219G "|D }2 O[IW WO )

(2002 '£28-¥28
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Unfortunately...

* Motif counting is computationally
costly and still being actively studied,
so NetworkX does not have built-in
motif counting tools

* One should use specialized software

- "mfinder” developed at Weizmann
Institute of Science

- "iGraph” in R / Python also has motif
counting functions
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Community

+ A subgraph of a network within which
nodes are connected to each other
more densely than to the outside

- Still defined vaguely...

- Various detection
algorithms proposed
- K-clique percolation
* Hierarchical clustering
* Girvan-Newman algorithm

* Modularity maximization
(e.g.. Louvain method) (diagram from Wikipedia) 20




K-clique percolation method

1. Choose a value for k (e.g., 4)

2. Find all k-cliques (complete subgraphs
of k-nodes) in the network

3. Assume that two cliques belong to
the same community if they share k-
1 nodes ("k-clique percolation™)

This methods detect communities
that potentially overlap
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Exercise

» Find communities in the following
network by 3-clique percolation
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Exercise

- Generate a random network made of
100 nodes and 250 links

» Calculate node positions using spring
layout

* Visualize the original network & its k-
cligue communities (for k = 3 or 4)
using the same positions
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Exercise

* Find k-cliqgue communities in the
(undirected) Supreme Court Citation
Network

+ Start with large k (say 100) and
decrease it until you find a meaningful
community
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Non-overlapping communities

* Other methods find ways to assign
ALL the nodes to one and only one
community

- Community structure is a mapping from a
node ID to a community ID

- No community overlaps
- No "stray” nodes
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Modularity

* A quantity that characterizes how
good a given community structure is in
dividing the network

lEinI B IEin-R'
|E|

- |E;,|: # of links connecting nodes that belong
to the same community

- |E,,_x|: Estimated |E, | if links were random

Q:
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Community detection based on
modularity

- The Louvain method

- Heuristic algorithm to construct
communities that optimize modularity

* Blondel et al. J. Stat. Mech. 2008 (10):
P10008

* Python implementation by Thomas
Aynaud available at:

- https://bitbucket.org/taynaud/python-
louvain/
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Exercise

* Detect community structure in the
(undirected) Supreme Court Citation
Network using the Louvain method

* Measure the modularity achieved
* How many communities are detected?
* How large is each community?
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Block model

* Create a new, “coarse” network by
aggregating nodes within each
community into a meta-node
- Meta-nodes contain original communities

- Meta-edge weights show connections b/w
communities
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Exercise

- Create a block model of some real-
world network by using its
communities as partitions

* Visualize the block model with edge
widths varied according to connections
between communities

30



Hierarchy

* Many real-world complex networks
have many layers of modular
structures forming a hierarchy

- Community structures are not single-
scale, but multiscale

- Similar to fractals
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Deterministic scale-free networks

+ E.g. Dorogovtsev, Goltsev & Mendes 2002

- Scale-free
degree
distribution

- But still high
clustering
coefficients




Clustering coefficients and k

- Deterministic scale-free networks

show another scaling law

(Dorogovtsev et al. 2002;
Ravasz & Barabasi 2003)
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C(k) plots of real-world networks
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Exercise

» Plot C(k) for several real-world
network data and see if the inverse
scaling law between k and C(k)
appears or not
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