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Describing networks with matrices (1)

+ Adjacency matrix

A matrix with rows and columns labeled by
nodes, where a;; represents the number of
edges between node i and node |

(must be symmetric for undirected graph)

- Incidence matrix (not discussed much)

A matrix with rows labeled by nodes and

columns labeled by edges, where q;

indicates whether edge j is connected to
node i (1) or not (O)



Describing networks with matrices (2)

* Transition probability matrix

A matrix with rows and columns labeled by
states (nodes), where a;; represents the
probability of transition from state (node) i
to state (node) j

* Laplacian matrix

A matrix with rows and columns labeled by
nodes, where a;; represents node degree if
i = J, oris -1 if node i and node j are
connected



_ Write adjacency and incidence
Exercise matrices of the (multi-)graph below

Q




Exercise

* Write an adjacency matrix of the (multi-)graph
below
U, Uz
>0




Exercise

» Think about which
node would be most
suitable to be a
source or a sink in a
network represented
by the adjacency
matrix on the right

- Find the maximal
flow of this network
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Arithmetic Operations Applied to
Adjacency Matrices



Sum and difference of adjacency
matrices

* One can calculate a sum and a
difference of adjacency matrices if
the two graphs have the same number
of nodes.

Adjacency matrix Adjacency matrix
of graph A of graph B

\A + B/

Sum of the two adjacency matrices




Exercise

* Calculate the sum of and the difference
between the adjacency matrices of the
following two graphs, and draw the actual
shape of the resultant graphs




Product of adjacency matrices

» Similarly, one can calculate a product
of two adjacency matrices
(multiplication is not commutative)

Adjacency matrix Adjacency matrix Adjacency matrix Adjacency matrix
of graph A of graph B of graph B of graph A

AB ¢z BA

not equal

in general
Product of the two Product of the two

adjacent matrices (1) adjacent matrices (2)
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Exercise

+ Calculate two different products of the adjacency
matrices of the following two graphs, and draw the
actual shape of the results (Note: such multiplication
may create directed graphs)

* Then think about what the product means

Ug

A ) : o o B




Answer

* Product X Y indicates a directed graph that maps
each node to a set of possible destinations that
may be reached by a two-step move, first
following Y and then X

Uy Ug U, Ug




Power of Adjacency Matrices



What does a power of an adjacency

matrix mean?
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Try to calculate Ax,
A2x, A3x, etc.
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What does a power of an adjacency
matrix mean?

o 01 2 1)

| 1001

\ A=|5001
" (1111,

This formula gives a
A" x ? set of nodes that can
be reached in n steps

from node u, (and the
# of such walks) 5




What does a power of an adjacency
matrix mean?
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A" L = A" results starting from
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100 6 every node gives a
0100 power of adjacency
0010 :

0001 matrix A 6




A theorem on the power of
adjacency matrix

* In adjacency matrix A raised to the
power of n, (A"); gives the number of
different walks of length n that
starts at node j and ends at node i

(This applies to both undirected and directed
graphs; proof can be easily obtained by using
mathematical induction with n)
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Exercise

* Calculate how many walks of length two exist
between u; and every other node in the graph

below
Uy U,
>0
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Exercise

» Using the power of an adjacency
matrix, count the number of triangles
included in:

(a) A complete graph made of 20 nodes

(b) An Erdos-Renyi random network made
of 1000 nodes with connection probability
0.01
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Determining graph connectivity

+ A" gives the number of different
walks of length n between every pair
of nodes

) Cn = zk=1~r| Ak

gives the number of different walks
of length n or shorter between every
pair of nodes

20



Determining graph connectivity

) Cn = Zk=1~r| Ak

gives the number of different walks
of length n or shorter between every
pair of nodes

* In Cix of nodes - 1), every possible path
in that graph should be counted

- Because a path must not visit the same
node more than once

21



Determining graph connectivity

0 = k
C(# of nodes - 1) ~ Zk=1~(# of nodes - 1) A

* If (Cit of nodes - 1)) > O for all izj,
then there is a path between any pair
of nodes (and vice versa)

= The original graph is *numerically™
determined to be a (strongly)
connected graph
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Exercise

* Show the strong connectivity of the graph below
by calculating the sum of powers of its adjacency
matrix

U, u,
>0
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Exercise

+ An alternative method is just to
calculate (A + I)# of nodes -1) gnd check
if all elements have positive values

- Those values no longer show # of paths,
but still tell us whether there are paths
between each pair of nodes

* Why does this work?

24



Transitive closure

* Transitive closure of a graph is a
graph that contains edge <u, v>
whenever there is a path from node u
to node v in the original graph

- Obtained by making all diagonal
components O and all non-diagonal non-
zero components 1 in Ci4 o¢ nodes - 1)

- Describes accessibility between nodes

- Is a complete graph if the original graph
is (strongly) connected

25



Transition Probability Matrix



Transition probability matrix

+ An adjacency matrix of a directed
graph with normalized weights (i.e.,
sum of all weights of outgoing links is
always 1 for every node)

- Considers each node as a "state”, and a
directed link as a stochastic “"state
transition”: Representing a Markov chain

- Can be constructed from a unweighted
directed graph by assighing normalized
weights

27



Exercise

* Create a TPM of the following graph
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Properties of TPMs

* A product of two TPMs is also a TPM

+ Always has eigenvalue 1

- |A] <=1 for all eigenvalues

+ If the original network is strongly
connected (with some additional conditions),
the TPM has one and only one
eigenvalue 1 (no degeneration)

29



TPM and asymptotic probability
distribution

- |A] <=1 for all eigenvalues

+ If the original network is strongly
connected (with some additional conditions),
the TPM has one and only one
eigenvalue 1 (no degeneration)

— This is a unique dominant eigenvalue;
the probability vector will converge to
its corresponding eigenvector

30



Exercise

+ Obtain eigenvalues and eigenvectors
of the TPM created in the previous
exercise

+ Calculate T (1/5,1/5,1/5,1/5,1/5)T
for large n and see what you will get
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Application: Google’'s "PageRank”

- Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd,
'The PageRank Citation Ranking: Bringing Order to the Web'
(1998): http://www-db.stanford.edu/~backrub/pageranksub.ps

* Node: Web pages
- link: Web links

+ State: Temporary “importance” of that
node

+ Its coefficient matrix is a transition
probability matrix that can be obtained by
dividing each column of the adjacency
matrix by the number of 1's in that column,



Example

* PageRank is actually calculated by forcedly assigning positive
non-zero weights to all pairs of nodes in order to make the
entire network strongly connected
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Interpreting the PageRank network
as a stochastic system

1111

+ State of each node

can be viewed as a
relative population
that are visiting the
webpage at t

- At next timestep,

the population will
distribute to other
webpages linked from
that page evenly

34



PageRank calculation

* Just one dominant eigenvector of the
TPM of a strongly connected network
always exists, with A = 1

» This shows the equilibrium distribution
of the population over WWW

+ So, just solve x = Ax and you will
get the PageRank for all the web
pages on the World Wide Web
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Exercise

D
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Calculate the PageRank of each node in the above

network (the network is already strongly connected so you
can directly calculate its dominant eigenvector; but also try 36
using the NetworkX built-in function for PageRank)



A note on PageRank

* PageRank algorithm gives non-trivial
results only for asymmetric networks

+ If links are symmetric (undirected),
the PageRank values will be the same
as node degrees

- Prove this
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Laplacian Matrix



Laplacian matrix

* A matrix with rows and columns
labeled by nodes, where a;; represents
node degree if i = j, or is -1 if node

i and node j are connected
L=D- A

D: degree matrix (diagonal elements are
node degrees: all O elsewhere)
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Exercise

* Write a Laplacian matrix of the graph
below

40



Relationship with Laplacians in
vector calculus

* Related to “Laplacian” in vector
calculus/PDEs

- It is a negative, discrete version of it

- Similar to a “"second-order derivative”,
defined on a network

- E.g. diffusion on a network:

x(t+1) = x(¥) - d L x(1)
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Relationship with Laplacians in
vector calculus

Laplacian discretized over 2-D space:

Vef = 0%f/ox? + 0°f/0oy?
~ ( fi(x+ax,y)+fi(x-ax,y)-2fi(x,y) ) / Ax?
+( fi(x, y+ay)+fi(x,y-ay)-2f(x,y) ) / Ay?

= ( fi(x+Ak,y) + fi(x-Ak,y) + f,(x,y+Ak)
+ f.(x,y-2k) - 4f.(x,y) ) / Ak?

Laplacian (graph) ~ - Laplacian (vector calc.)



Properties of a Laplacian

* Has (1, 1, 1, .., 1) as an eigenvector
- Because each row/column adds up to O
- The corresponding eigenvalue is O

+ All eigenvalues >= 0O

- # of zero eigenvalues = # of connected
components in a graph

- 2nd smallest ev.: “algebraic connectivity”

- Smallest non-zero ev.: “spectral gap”

-+ Shows how quickly the network can suppress
non-homogeneous states and synchronize 43



Exercise

* Create an Erdos-Renyi random
network made of 100 nodes with
connection probability 0.03

» Obtain its Laplacian matrix and
calculate its eigenvalues

- See what you find

- Visualize the network and compare the
results
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Exercise

* Generate the following network
topologies w/ similar size and density:
- random graph
- barbell graph
- ring-shaped graph (i.e., degree-2
regular graph)
* Measure their spectral gaps and see

how topologies quantitatively affect
their values

45



Graph Spectrum



Degree distribution and graph
spectrum

» Structural characteristics of a large
complex network can be studied by
analyzing these distributions

- Similar networks often have similar
degree distributions and graph spectra

- Degree distribution is structural, intuitive
and very easy to obtain

- 6raph spectrum has strong connection to

both structure and dynamical behavior
47



Graph spectrum

» Distribution of eigenvalues of the
adjacency matrix of the network

? M1111)
10000 Spectrum
O—O—O ™ (10000 | = -2,0,0,0, 2
1 O O O O Degenerate
O \1 O O O O / eigenvalues

* Undirected graphs have symmetric
adj. matrices — all real eigenvalues
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Graph spectral analysis

* Plotting an eigenvalue distribution
(i.e., histogram)

- Especially effective for visualizing complex
network data obtained experimentally

- Computing power may be needed to obtain these
plots for large networks

. e e T R e
----------------

Wigner's semi-circle law ~ de Agquiar & Bar-Yam, Phys. Rev. E 71: 016106 (2005) 49



Exercise

+ Obtain spectra of networks made of
1,000 nodes each

- Random
- Scale-free
- Based on some data

* Plot their density distributions

50



Exercise

+ Obtain the spectrum of the Supreme
Court Citation network

- Can you do this??

- If you can't, make a subgraph induced by
randomly selected 1,000 nodes, and
conduct the same analysis

* Crude random sampling technique...

51



What eigenvalues and eigenvectors
can tell us

* An eigenvalue tells whether a
particular “state” of the network
(specified by its corresponding
eigenvectors) grows or shrinks by
interactions between nodes over edges

- Re()) > O = growing
- Re(L) < O = shrinking
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Laplacian spectrum

» Distribution of eigenvalues of the
Laplacian matrix of the network

Q z N
4-1-1-1-1 Spectrum
-11 000
O—O—Om -10100 = 0,1, 1,1,5
-1 0010
-1 0001 camvalues
O \ _/ ?

53



Review of Laplacian spectrum

+ At least one A is zero
+ All the other As are zero or positive

+ # of zero As corresponds to # of
connected components in the graph

» 2nd smallest A: “algebraic connectivity”
+ Smallest non-zero A: “spectral gap”

Algebraic connectivity

TR N

Spectral gap 54

As many Os as # of CC's



Spectral gap

* Determines how easily a dynamical
network can get synchronized

- The larger it is (relatively to the largest

An). the easier the synchronization is
(Barahona & Pecora, Phys. Rev. Lett. 89: 054101. 2002)

q 300

I. ER random

II. NW small-world
IIT. WS small-world
IV. BA scale-free

“) (Zhan, Chen & Yeung, Physica
0 — A 389: 1779-1788, 2010) 55

Index of Eigenvalue



Exercise

- Create a small-world network of
1,000 nodes with varying p

» Obtain Laplacian spectra of the
network and find its spectral gap A,

* Plot A, over p and see how it changes
as random rewiring rate increases
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