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Dynamics on networks

* Dynamic state changes taking place on
a static network topology

- Regulatory dynamics on gene/protein
networks

- Population dynamics on ecological
networks

- Disease infection on social networks

- Information/culture propagation on
organizational/social networks



Simple example:
Random walk on a network

* An agent (or a set of agents) moving
on a network

* An agent jumps randomly to one of
the neighbor nodes at each time step




Exercise

+ Simulate random walk of an agent on
a directed random network made of

50 nodes

+ Count how many times each node was
visited by the agent over time



TPM and asymptotic probability
distribution (review)

- |A] <=1 for all eigenvalues

+ If the original network is strongly
connected (with some additional conditions),
the TPM has one and only one
eigenvalue 1 (no degeneration)

— This is a unique dominant eigenvalue;
the probability vector will converge to
its corresponding eigenvector



Exercise

» Construct the transition probability
matrix of the random network used in
the previous exercise

* Find its dominant eigenvector with A =
1

»+ Compare the results with the previous
“counting” results



Dynamics on Networks with
Discrete Node States



Opinion formation (Voter model)

+ A simple model of opinion formation in
society
- Opinions = discrete states




Three versions of voter models

* Original voter model

- A randomly selected node copies the
opinion of one of its neighbors

- Reverse voter model

- A randomly selected node “pushes” its
opinion into one of its neighbors

- Link-based voter model

- An opinion is copied through a randomly
selected link



Exercise

- Simulate the three different versions
of the voter model (original, reverse
and link-based) on a Barabasi-Albert
scale-free network

»+ Compare the speed of opinion
homogenization between the three
models

- Why different?
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Epidemics (SIS/SIR model)

+ Initially, a small fraction of nodes are
infected by a disease

+ If a susceptible node has an infected
neighbor, it will be infected with
probability p, (per infected neighbor)

 An infected node will recover and
become susceptible (SIS) or
recovered (SIR) with probability p.
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Exercise

+ Study the effects of infection/
recovery probabilities on the fixation
of a disease on a random social
network

- In what condition will the disease remain
within society?

- In what condition will it go away?
- Is the transition smooth, or sharp?
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Exercise

* Do the same experiments with WS
small-world networks and BA scale-

free networks

+ Compare their properties
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Cascade of failure

* Load on a failing node is divided and
distributed to its neighbors

+ If the load exceeds capacity of each node,
it causes another node failure

I
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Exercise

- Simulate a cascade of failure on a
scale-free network made of 100
nodes with random node capacities and
load assignments

+ Investigate which node has the most
significant impact when it fails
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Hopfield network

- A.k.a. “"attractor network”

* Neurons connected in a shape of an
undirected weighted complete graph

- Each neuron takes either 1 or -1, and

updates its state in discrete time y



State-transition rule

si(t+1) = sign ( Z; w;; s;(1) )

"Wy connection weight between neuron
i and neuron |

* w;; = w;; (symmetric interaction)
* W = O (no feedback to itself)
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Setting weights by "imprinting”

- k ek
wij-stisj

* k : index of patterns memorized
+ sk. : state of neuron i in pattern k

- e.q. 5

Pattern 1 Pattern 2

WO
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Recovering patterns

* When started with some initial pattern, the
network “remembers” the closest pattern in
its memory (or its reversal)

- Can be applied to content addressable memory,
pattern recognition, etc.

Initial pattern Memorized pattern

Impr'm‘rmg Recovery




Exercise

+ Simulate the behavior of the following
Hopfield network

20



Gene regulatory network

* Each gene is
activated or
inhibited by
other genes
- Forming a
network of
"logic gates”
- Each gene

takes binary
state (on/off)
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Nature Reviews | Genetics

(from Hasty et al., Nature Reviews Genetics 2, 268-279, 2001)
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Boolean network

* Mathematical abstraction of gene
regulatory networks
- Binary node states

- Each node determines next state using
its own Boolean state transition function
(referring to neighbors’ states)

- Random Boolean network:

- Network topology and state transition
functions are both randomly generated
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Example of transition functions

+ 2-input functions (22°=16 possibilities)
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Kauffman's NK networks

- N: # of nodes

+ K: # of inputs to each node

- Topologies and state-transition functions
are both random

- Similar to, but not the same as, the NK
fitness landscape (NK model) often used
in mathematical biology and management
sciences
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NK network's attractors

- Total # of macro-states: 2N

* The network eventually falls into one
of its "attractors”
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Exercise

* Create a Python code that generates
the NK network's state-transition
diagram (i.e., a directed network
whose nodes are the network’'s macro-
states)

* Count how many attractors exist

+ Study how # of attractors change
when you vary N and K
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Dynamics on Networks with
Continuous Node States
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Simple diffusion

. Individually:

+ Collectively (with Laplacian L):

ds
d_'l'--DLs
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Exercise

+ Simulate a diffusion process of
continuous node states on a Barabasi-

Albert scale-free networks with n =
100and m = 1
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Exercise

* Calculate the eigenvalues and
eigenvectors of Laplacian matrices of
several different network topologies

* Interpret their meanings in the
context of diffusion

» Confirm your interpretation by
numerical simulation of the diffusion
processes
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Synchronization

* Linear coupling model:

SL=Fs) + I, (¢4 HES))

* F(s): internal dynamics
* € = (c;): coupling matrix
* H(s): output function

- If s(t) = s(t) for all i, then the network

is synchronized .



Synchronization and Laplacian

» If coupling depends only on the
difference of outputs across a link:

d_,',i': F(s)) + o 2, N. (H(s;) - H(s))

-Te., C=-0L

- Laplacian’s "spectral gap” (first non-zero
eigenvalue) is critical in determining
synchronizability of the network
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Exercise

+ Simulate the following nonlinear
Kuramoto model:

:_:i: Wi + K/IN|I ZJ in Ni Siﬂ(SJ = Si)

* w;: inherent angular velocity
* N;: neighbors of node I

- What kind of networks synchronize most

ily?
easily: s



Exercise

* Measure and plot the following "phase
coherence” in the simulation of the
Kuramoto model:

r‘=|ZJ-ei9J/n|
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Synchronizability
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Synchronizability

+ Synchronizability of a simple coupled
dynamical network can be studied by
conducting stability analysis

K= RO + a3 (HOX) - HOc) )

R(x): Local reaction term (homogeneous)
H(x): Output function
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Exercise

» Consider adding a small perturbation
to the general solution of the
dynamical equation (w/o interactions)

X =R — x)

* Conduct stability analysis by assuming:
xi(t) = x(t) + Ax()
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Condition for synchronizability

+ Solution x (1) is stable (i.e., the
network is synchronized) if

a A H(x(1)) > R(x,(1))

for all i and t
(you need to consider only A, and A,)
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Exercise

+ Analyze the synchronizability condition
of the following coupled oscillator
model:

do);
- = B0+ o > (6, — 6;)

JEN;
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Mean-Field Approximation
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Mean-field approximation

* An approximation to drastically reduce the
dimensions of the system by reformulating
the dynamics in terms of “a state of one
node” and "the average of all the rest (=
mean field)"”
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How MFA works

A node

Sick

1. Make an approximated description about how one
node changes its state through the interaction
with the average of all the rest (= mean field)

2. Assume that 1. uniformly applies to all the nodes,

and analyze how the mean field itself behaves



Mathematical description of
MFA (difference equations)

. Or'iginal equations:
= F({x1})
Appr'oxlma're equations with MFA:
Xiy = Fi(Xi,_y, <Xy 1) v
<x>, = Z. X, ,/n

Each state-transition function »*
takes only two arguments:

its own state and the "mean field” .



Example: SIS on a random network

» Infection probability p;
* Recovery probability p.
+ Edge probability p,

 Write down a difference equation
that describes how the probability of
infected nodes, q; (mean field),
changes over time
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Example: SIS on a random network

Current state  Next state Probability of this transition

0 (susceptible) 0 (susceptible) (1 — ¢)(1 — pegp;)™!

O (susceptible) 1 (infected) (1—¢q) (1= (1 —pegps)™™)
1 (infected) O (susceptible) qgp,

1 (Infected) 1 (infected) q(1 —py)

* Find equilibrium states

+ Study the stability of those
equilibrium points
- When does the equilibrium q = O become

unstable (i.e., epidemic occurs)? .



Example: SIS on a SF network

» Infection probability p;
* Recovery probability p.
* Degree distribution P(k)

+ Write down a difference equation
that describes how the probability of
infected nodes with degree k, q.(k)
(many mean fields), changes over time
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Degree-dependent infection

* Probability for a node with degree k
to get infected from its neighbor:

™ Pk R)a(k)p,

Pn : neighbor degree probability distribution
If the network is nonassortative:
L/
Pn(k,) — %P(k/)



FYI: Friendship paradox

- “Your friends have more friends than
you do, on average”

o o N KPR (k)
;kPn(k)_; R0}




Calculation...

Current state  Next state Probability of this transition

O (susceptible) 0 (susceptible) (1 —q(k ))( DT k_’ P (K )pi)k

susceptible) 1 (infected) (1—61(1’1))( ( — Y w  P(K)g (k!)%)j

0( (
1 (infected) O (susceptible) q(k)p,
1 (infected) 1 (infected) q(k)(1 — py,)

k!

g1 (k) = (1 = q(k)) (1 - (1 - &;P(ﬁ Ja(k )pi) ) +q(k)(1 —pr)
= (1 —q(k)) (1 — (1= qnpi)k) +q(k)(1 =py),

D K'P(E)q(K')
(n =
(k)
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Calculation...

Gir1(k) = (1 —q(k)) (1 = (1 = kgnpi)) + q(k)(1 —pr)
(1 —q(k))kgnpi + q(k) — q(k)p, = f(q(k))

kgn-pi
QEQ(A) — Aq D; +p

With this:

Z A ; Q'npz

Q'npz + Pr
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Calculation...

Z A ; Q?zpz

A"qnpz + Py

- For BA SF networks, this becomes:

1 - 'll; nt’t
qH. — fllf ng’ll'f_g q p ’
2m —~ E'qnpi + pr
=Y
= k(K aupi +pr)
N Pr
QH — Pr

(emri — 1)mp;
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Calculation...

* Final stability analysis:

df (q(k . R2P(k)p,
f(q(F)) — kgt P (F)p 1= p, = (k)
dq (A) q(}g):k kanp; Agnpz + Pr <A>
gnp;+pr
] . k2. om2k—3p,
(k) = ki s e L,
(E? mpi — 1)?71,1’[)3 I(e ﬂi';;i —1)mp; Pi Pr
L r mip;
— Pr p + p . + 1 o pf

(emri — 1)m mkz + k

(em—pé —1)m
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Conclusion

y If Pi — O:
: Apfr m[pi _>0]
lim (k) = — - + 1—p,
pi—0 ([e}%@%m]—l)m ([?’%jgll) f"k
—1—p,

+ Since 0 < 1 -p. <1, the non-zero
equilibrium state (i.e., epidemic) is
still stable even if p; — O on scale-
free networks!!
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Take-home lesson

* Dynamics on networks can
be influenced significantly
by network topology
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