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Dynamics on networks

* Dynamic state changes taking place on
a static network topology

- Regulatory dynamics on gene/protein
networks

- Population dynamics on ecological
networks

- Disease infection on social networks

- Information/culture propagation on
organizational/social networks



Simple example:
Random walk on a network

»+ An agent (or a set of agents) moving
on a network

* An agent jumps randomly to one of
the neighbor nodes at each time step




Exercise

- Simulate random walk of an agent on
a directed random network made of
50 nodes

» Count how many times each node was
visited by the agent over time



TPM and asymptotic probability
distribution (review)

- |A] <= 1 for all eigenvalues

+ If the original network is strongly
connected (with some additional conditions),
the TPM has one and only one
eigenvalue 1 (no degeneration)

— This is a unique dominant eigenvalue;
the probability vector will converge to
its corresponding eigenvector



Exercise

» Construct the transition probability
matrix of the random network used in
the previous exercise

* Find its dominant eigenvector with A =
1

*+ Compare the results with the previous
“counting” results



Dynamics on Networks with
Discrete Node States



Opinion formation (Voter model)

+ A simple model of opinion formation in
society
- Opinions = discrete states




Three versions of voter models

» Original voter model

- A randomly selected node copies the
opinion of one of its neighbors

- Reverse voter model

- A randomly selected node “pushes” its
opinion into one of its neighbors

- Link-based voter model

- An opinion is copied through a randomly
selected link



Exercise

- Simulate the three different versions
of the voter model (original, reverse
and link-based) on a Barabasi-Albert
scale-free network

+ Compare the speed of opinion
homogenization between the three
models

- Why different?
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Epidemics (SIS/SIR model)

+ Initially, a small fraction of nodes are
infected by a disease

* If a susceptible node has an infected
neighbor, it will be infected with
probability p; (per infected neighbor)

+ An infected node will recover and
become susceptible (SIS) or
recovered (SIR) with probability p.
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Exercise

+ Study the effects of infection/
recovery probabilities on the fixation
of a disease on a random social
network

- In what condition will the disease remain
within society?

- In what condition will it go away?
- Is the transition smooth, or sharp?
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Exercise

* Do the same experiments with WS
small-world networks and BA scale-

free networks

+ Compare their properties
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Cascade of failure

* Load on a failing node is divided and

distributed to its neighbors

+ If the load exceeds capacity of each node,

it causes another node failure

"
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Exercise

- Simulate a cascade of failure on a
scale-free network made of 100
nodes with random node capacities and
load assignments

+ Investigate which node has the most
significant impact when it fails
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Hopfield network

- A.k.a. "attractor network”

* Neurons connected in a shape of an
undirected weighted complete graph

- Each neuron takes either 1 or -1, and

updates its state in discrete time y



State-transition rule

si(t+1) = sign ( Z; w;; s(1) )

* w;; + connection weight between neuron
i and neuron |

* w;; = wW;; (symmetric interaction)
- w. = 0 (no feedback to itself)
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Setting weights by “imprinting”

- K ek
wij-stisJ-

* k : index of patterns memorized
- sk : state of neuron i in pattern k

- e.g. ,

Pattern 1 Pattern 2

i
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Recovering patterns

* When started with some initial pattern, the
network “remembers” the closest pattern in
its memory (or its reversal)

- Can be applied to content addressable memory,
pattern recognition, etc.

Initial pattern Memorized pattern

Impr'm’rmg Recovery




Exercise

+ Simulate the behavior of the following
Hopfield network

2, -2 : weights

20



Gene regulatory network

* Each gene is
activated or
inhibited by
other genes
- Forming a
network of
“logic gates”
- Each gene

takes binary
state (on/off)
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(from Hasty et al., Nature Reviews Genetics 2, 268-279,2001)
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Boolean network

* Mathematical abstraction of gene
regulatory networks

- Binary node states

- Each node determines next state using
its own Boolean state transition function
(referring to neighbors' states)

- Random Boolean network:

- Network topology and state transition
functions are both randomly generated
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Example of transition functions

- 2-input functions (22°=16 possibilities)
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Kauffman's NK networks

- N: # of nodes

+ K: # of inputs to each node

- Topologies and state-transition functions
are both random

- Similar to, but not the same as, the NK
fitness landscape (NK model) often used
in mathematical biology and management
sciences
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NK network's attractors

- Total # of macro-states: 2N

* The network eventually falls into one
of its “attractors”
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Exercise

* Create a Python code that generates
the NK network's state-transition
diagram (i.e., a directed network
whose nodes are the network's macro-
states)

* Count how many attractors exist

+ Study how # of attractors change
when you vary N and K
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Dynamics on Networks with
Continuous Node States
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Simple diffusion

» Individually:
ds.
d'|'l =D szN (S B S)

+ Collectively (with Laplacian L):

ds
d_'I'--DLS
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Exercise

+ Simulate a diffusion process of
continuous node states on a Barabasi-

Albert scale-free networks with n =
100and m = 1
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Exercise

* Calculate the eigenvalues and
eigenvectors of Laplacian matrices of
several different network topologies

* Interpret their meanings in the
context of diffusion

» Confirm your interpretation by
numerical simulation of the diffusion
processes
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Synchronization

* Linear coupling model:

= F(s) + I, (o HGs) )

* F(s): internal dynamics
* € = (¢;): coupling matrix
* H(s): output function

- If s(t) = s(t) for all i, then the network

is synchronized .



Synchronization and Laplacian

» If coupling depends only on the
difference of outputs across a link:

Sh= Fls) + 0 Zjin, (H(s) - H(s))

-Te., C=-0L

- Laplacian’s “spectral gap” (first non-zero
eigenvalue) is critical in determining
synchronizability of the network
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Exercise

+ Simulate the following nonlinear
Kuramoto model:

iz w, + K/IN Z 0 sins; - )

* w;: inherent angular velocity
* N;: neighbors of node I

- What kind of networks synchronize most

ily?
easily: i



Exercise

* Measure and plot the following “"phase
coherence” in the simulation of the
Kuramoto model:

r‘=|ZJe'eJ/ﬂ|
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Synchronizability
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Synchronizability

+ Synchronizability of a simple coupled
dynamical network can be studied by
conducting stability analysis

dx.

TR = R0+ 0T (HO) - HE) )

R(x): Local reaction term (homogeneous)
H(x): Output function
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Exercise

+ Consider adding a small perturbation
to the general solution of the
dynamical equation (w/o interactions)

X =R - x)

+ Conduct stability analysis by assuming:
xi(t) = x(t) + Axi(t)
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Condition for synchronizability

+ Solution x (1) is stable (i.e., the
network is synchronized) if

a A; H(x,(1)) > Ri(x (1))

for all i and t
(you need to consider only A, and A,)
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Exercise

* Analyze the synchronizability condition
of the following coupled oscillator
model:

d;
- = B0+ a > (6, — 6;)

JEN;
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Mean-Field Approximation
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Mean-field approximation

* An approximation to drastically reduce the
dimensions of the system by reformulating
the dynamics in terms of “a state of one
node” and “"the average of all the rest (=
mean field)"”
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How MFA works

A node

Sick

1. Make an approximated description about how one
node changes its state through the interaction
with the average of all the rest (= mean field)

2. Assume that 1. uniformly applies to all the nodes,

and analyze how the mean field itself behaves



Mathematical description of
MFA (difference equations)

- Original equations:

= F({x1})
Approxuma're equations with MFA:
xl.r - |(x'1' 1, <X>1'-1) ........................

<x>. = X. x.,/n

Each state-transition function »
takes only two arguments:

its own state and the "mean field”



Example: SIS on a random network

* Infection probability p;
* Recovery probability p.
+ Edge probability p,

+ Write down a difference equation
that describes how the probability of
infected nodes, g, (mean field),
changes over time
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Example: SIS on a random network

Current state Next state Probability of this transition

0 (susceptible) 0 (susceptible) (1 — ¢)(1 — pegp;)™ !

O (susceptible) 1 (infected) (1—q) (1= (1= pegps)™™1)
1 (infected) 0 (susceptible) ¢p,

1 (infected) 1 (infected) q(1 —p,)

* Find equilibrium states

+ Study the stability of those
equilibrium points
- When does the equilibrium q = O become

unstable (i.e., epidemic occurs)? .



Example: SIS on a SF network

* Infection probability p;
* Recovery probability p.
* Degree distribution P(k)

+ Write down a difference equation
that describes how the probability of
infected nodes with degree k, q;(k)
(many mean fields), changes over time
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Degree-dependent infection

* Probability for a node with degree k
to get infected from its neighbor:

S Pk R)g(K)p,

Pn : neighbor degree probability distribution
If the network is nonassortative:
k/
P, (k) = — P(K)
(k) a7



FYI: Friendship paradox

- "Your friends have more friends than
you do, on average”

o o N\ KEP(E) (K
;kpn(k)_; R}




Calculation...

Current state  Next state Probability of this transition

0 (susceptible) 0 (susceptible) (1 — q(k ))( — S &P )q(K )pi)k

O (susceptible) 1 (infected) (1 —q(k)) ( — ( — 3 % (K')q (kr)pi)j
(infected) O (susceptible) q(k)p,
( (

’
1 (infected) 1 (infected) q(k)(1 —p»)

g1 (k) = (1 = q(k) (1 - (1 —Z@P(A) (k )p?;) ) +q(k)(1 - p,)

k!

= (1= q(k) (1= (1= gup)*) +a(k) (1 = py),

_ S KP(H)g()

In = 49
(k)




Calculation...

e+1(k) = (1 —q(k)) (1 — (1 — kgnpi)) + q(k)(1 — p;)
(1 —q(k))kgnpi + q(k) — q(k)p, = f(q(k))

Aanz
QE-CI(A) — Aq D; +p

With this:

Z A ; Q'npz

q:-*zpz + Pr
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Calculation...

Z L' P Q'npz

A;Q?zpz + Dr

* For BA SF networks, this becomes:

_ I« ! 27.1—3 k' qnpi
(n — 2— Z A . Qm A A!

k'=m 'qnPi T Pr
L= Y
- — K (K qupi +pr)
- Pr
QH. ~ Pr

(emri — 1)mp;
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Calculation...

* Final stability analysis:

dfla(k k2P (k)p;
) IS S ) (3 U
dq(k) q(k)= g tnli kqnpi +pr (k)
r r AQ 2 Qk_g ;
r(k) = —k—p p i+ p m*k™"p 1y

(e mp; — l)mpi fk— L Pi + Pr 2m

(e™Pi —1)mp;
k2 +1—p,
(ﬁ? TP — l)m Pr + k

(em—pi —1)m
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Conclusion

- If p, — O
. kp, m |p; — 0
lim r(k) = — - + +1—p,
pi—0 ([ei?z — oo} —l)m ([ ﬁ%jg ]1) f"k
—1—p,

»+ Since 0 < 1 - p. < 1, the non-zero
equilibrium state (i.e., epidemic) is
still stable even if p; — O on scale-
free networksl!
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Take-home lesson

* Dynamics on networks can
be influenced significantly
by network topology
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