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Abstract—This paper reports several new simulation results
obtained with the revised Swarm Chemistry model. The model
extensions included local transmission of recipes (kinetic rules)
between particles, their stochastic differentiation, and competi-
tion and mutation of recipes. These extensions aimed to make the
swarms capable of demonstrating open-ended evolution. The re-
sults indicated that “cooperation” among particles is essential for
creating and maintaining macroscopic coherent structures, and
that high mutation rates and dynamic environmental conditions
may promote continuing evolutionary changes.

I. INTRODUCTION

In the closing session of ALIFE XII, Packard [1] pointed out
that several subfields were reaching their maturity in the Arti-
ficial Life community, including (a) artificial chemistry/origin
of life, (b) evolutionary dynamics/open-ended evolution, and
(c) swarm robotics/collective behavior. Packard also claimed
that integrating those subfields into unified research projects
would be the next major challenge of Artificial Life research.

This paper presents an attempt to achieve such an ambitious
goal by integrating evolutionary dynamics (topic (b) above)
into Swarm Chemistry [2], [3], [4] which already integrated
(a) and (c). A particular focus is on the endeavor toward
demonstrating open-endedness in the evolutionary dynamics
of artificial chemical systems. In what follows, several model
extensions added to Swarm Chemistry, some preliminary sim-
ulation results, and future research plans will be discussed.

II. MODEL

Swarm Chemistry [2], [3], [4] is an artificial chemistry
framework that can demonstrate self-organization of dynamic
patterns of kinetically interacting heterogeneous particles. A
swarm population in Swarm Chemistry consists of a number
of simple self-propelled particles moving in a two-dimensional
continuous space. Each particle can perceive average positions
and velocities of other particles within its local perception
range, and change its velocity in discrete time steps according
to kinetic rules similar to those of Reynolds’ Boids [5].

Each particle is assigned with its own kinetic parameter
settings that specify preferred speed, local perception range,
and strength of each kinetic rule (see [2] for details of the
simulation algorithm and the use of these parameters in it).
Particles that share the same set of kinetic parameter settings
are considered of the same type. Particles do not have a
capability to distinguish one type from another; all particles
look exactly the same to themselves. For a given swarm,
specifications for its macroscopic properties are indirectly and
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implicitly woven into a list of different kinetic parameter set-
tings for each swarm component, called a recipe (see Fig. 1),
which would be hard to obtain through conventional design
methods but can be obtained heuristically through interactive
evolutionary methods [2], [6].

Several major modifications were recently implemented in

the Swarm Chemistry model [3], [4], as follows:

1) There are now two categories of particles, active (mov-
ing and interacting kinetically) and passive (remaining
still and inactive). An active particle holds a recipe of
the swarm (a list of kinetic parameter sets) (Fig. 1(a)).

2) A recipe is transmitted from an active particle to a
passive particle when they collide, making the latter
active (Fig. 1(b)).

3) The activated particle differentiates randomly into one
of the multiple types specified in the recipe, with prob-
abilities proportional to their ratio in it (Fig. 1(c)).

4) Active particles randomly and independently re-
differentiate with small probability, r, at every time step.

5) A recipe is transmitted even between two active particles
of different types when they collide. The direction
of recipe transmission is determined by a competition
function that picks one of the two colliding particles as
a source (and the other as a target) of transmission based
on their properties (Fig. 1(d)).

6) The recipe can mutate when transmitted, as well as spon-
taneously at every time step, with small probabilities,
p: and ps, respectively (Fig. 1(e)). In a single recipe
mutation event, several mutation operators are applied,
including duplication of a kinetic parameter set (5% per
set), deletion of a kinetic parameter set (5% per set),
addition of a random kinetic parameter set (10% per
event in Exps. 1, 2, 3; increased to 50% per event in
Exps. 4, 5), and a point mutation of kinetic parameter
values (10% per parameter).

These extensions made the model capable of show-
ing morphogenesis and self-repair [3] and autonomous
ecological/evolutionary behaviors of self-organized ‘“‘super-
organisms” made of a number of swarming particles [4].

III. EXPERIMENTS

Several simulation experiments were conducted using the
revised Swarm Chemistry model described above. The sim-
ulator codes were written in Java. In all simulation runs,
10000 particles were simulated for a fixed number of time
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How particle interactions work in the revised Swarm Chemistry (from [4]). (a) There are two categories of particles, active (blue) and passive (gray).

An active particle holds a recipe of the swarm in it (shown in the call-out). Each row in the recipe represents one kinetic parameter set. The underline shows
which kinetic parameter set the particle is currently using (i.e., which kinetic type it is differentiated into). (b) A recipe is transmitted from an active particle
to a passive particle when they collide, making the latter active. (c) The activated particle differentiates randomly into a type specified by one of the kinetic
parameter sets in the recipe given to it. (d) A recipe is transmitted between active particles of different types when they collide. The direction of recipe
transmission is determined by a competition function that picks one of the two colliding particles as a source (and the other as a target) of transmission based
on their properties. (¢) The recipe can mutate when transmitted with small probability.

steps. In all the simulation results presented in this paper, the
redifferentiation probability was set to » = 0.005, while the
mutation probabilities p; and ps were varied.

Two different kinds of initial conditions were used: a
random initial condition made of 9900 inactive particles and
100 active particles with randomly generated one-type recipes
distributed over the space, and a designed initial condition
consisted of 9999 inactive particles distributed over the space,
with just one active particle that holds a pre-designed recipe
positioned in the center of the space. Specifically, recipes of
“swinger”, “rotary” and “walker-follower” patterns (Fig. 2)
were taken from the project website! and used.

All the simulations were done in a finite, 5000 x 5000
square space (in arbitrary units; for reference, the maximal
perception radius of a particle was 300). A “pseudo”-periodic
boundary condition was applied to the boundaries of the space.
Namely, particles that cross a boundary reappear from the
other side of the space just like in conventional periodic
boundary conditions, but they do not interact across boundaries
with other particles sitting near the other side of the space.

Ihttp://bingweb.binghamton.edu/ sayama/SwarmChemistry/

“swinger” “rotary” “walker-follower”

Fig. 2. Patterns generated by three recipes used for designed initial conditions
in the experiments.

In other words, the periodic boundary condition applies only
to particle positions, but not to their interaction forces. This
specific choice of boundary treatment was initially made
because of its simplicity of implementation, but it proved to be
a useful boundary condition that introduces a moderate amount
of perturbations to swarms while maintaining their structural
coherence and confining them in a finite area.

A. Exp. 1: Spontaneous Evolution in Swarm Chemistry

The first experiment was to see the basic evolutionary
dynamics of the model under low mutation rates (p; =
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Fig. 3. Results of Exp. 1: Evolutionary processes observed in the revised Swarm Chemistry model. Each image shows a snapshot of the space in a simulation,
where dots with different colors (or gray levels in print) represent particles of different types. Labels on the left indicates the competition function and the
initial condition used in each case. Snapshots were taken at logarithmic time intervals.

1073, ps = 107°). Random and designed (“swinger”) initial
conditions were used. The following four basic competition
functions were implemented and tested:

e faster: The faster particle wins.

e slower: The slower particle wins.

o behind: The particle that hit the other one from behind
wins. Specifically, if a particle exists within a 90-degree
angle opposite to the other particle’s velocity, the former

particle is considered a winner.

o majority: The particle surrounded by more of the same
type wins. The local neighborhood radius used to count
the number of particles of the same type was 30. The
absolute counts were used for comparison.

Results are shown in Fig. 3. The results with the “behind”
competition function were very similar to those with the
“faster” competition function, and therefore omitted from the
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figure. In general, growth and replication of macroscopic
structures were observed at early stages of the simulations.
The growth was accomplished by recruitment of inactive
particles through collisions. Once a cluster of active par-
ticles outgrew maximal size beyond which they could not
maintain a single coherent structure (typically determined by
their perception range), the cluster spontaneously split into
multiple smaller clusters, naturally resulting in the replication
of those structures. These growth and replication dynamics
were particularly visible in simulations with designed initial
conditions. Once formed, the macroscopic structures began to
show ecological interactions by themselves, such as chasing,
predation and competition over finite resources (i.e., particles),
and eventually the whole system tended to settle down in
a static or dynamic state where only a small number of
structures (or types of particles) were dominant. There were
some evolutionary adaptations also observed (e.g., in faster &
designed (“Swinger”); second row in Fig. 3) even with the low
mutation rates used in this experiment.

It was also observed that the choice of competition functions
had significant impacts on the system’s evolutionary dynamics.
Both the “faster” and “behind” competition functions always
resulted in an evolutionary convergence to a homogeneous
cloud of fast-moving, nearly independent particles. In contrast,
the “slower” competition function tended to show very slow
evolution, often leading to the emergence of crystallized
patterns. The “majority” competition function turned out to be
most successful in creating and maintaining dynamic behaviors
of macroscopic coherent structures over a long period of time,
yet it was quite limited regarding the capability of producing
evolutionary changes. This was because any potentially inno-
vative mutation appearing in a single particle would be lost in
the presence of local majority already established around it.

B. Exp. 2: Testing Various Competition Functions

Based on the results of the previous experiment, the follow-
ing five more competition functions were implemented and
tested. The last three functions that took recipe length into
account were implemented in the hope that they might promote
evolution of increasingly more complex recipes and therefore
more complex patterns:

o majority (probabilistic): The particle surrounded by more
of the same type wins. This is essentially the same
function as the original “majority”, except that the winner
is determined probabilistically using the particle counts
as relative probabilities of winning.

o majority (relative): The particle that perceives the higher
density of the same type within its own perception range
wins. The density was calculated by dividing the number
of particles of the same type by the total number of
particles of any kind, both counted within the percep-
tion range. The range may be different and asymmetric
between the two colliding particles.

e recipe length: The particle with a recipe that has more
kinetic parameter sets wins.

e recipe length then majority: The particle with a recipe
that has more kinetic parameter sets wins. If the recipe
length is equal between the two colliding particles, the
winner is selected based on the “majority” competition
function.

o recipe length X majority: A numerical score is calculated
for each particle by multiplying its recipe length by the
number of particles of the same type within its local
neighborhood (radius = 30). Then the particle with a
greater score wins.

Results are summarized in Fig. 4. As clearly seen in the
figure, the majority-based rules are generally good at main-
taining macroscopic coherent structures, regardless of minor
variations in their implementations. This indicates that inter-
action between particles, or “cooperation” among particles of
the same type to support one another, is the key to creating and
maintaining macroscopic structures. Experimental observation
of a number of simulation runs gave the author an impression
that the “majority (relative)” competition function would be
the best in this regard, therefore this function was used in
all of the following experiments. Unfortunately, none of these
majority-based functions showed notable evolutionary changes
because of the reason discussed in the previous subsection.

In the meantime, the “recipe length” and “recipe length then
majority” competition functions did not show any evolution
toward more complex forms, despite the fact that they would
strongly promote evolution of longer recipes. What was oc-
curring in these conditions was an evolutionary increase of
“garbage” kinetic parameter sets in a recipe, which did not
show any interesting macroscopic structure. This is qualita-
tively similar to the well-known observation made in Tierra

[7].

C. Exp. 3: Testing Different Recipes

A few other designed recipes were also used as initial
conditions in order to explore the effects of recipe contents on
evolutionary dynamics. Here the three recipes shown in Fig. 2
were used. Figure 5 shows three different simulation results,
each starting with a different designed recipe. Their dynamics
were remarkably different. Moreover, there were a couple
of other interesting observations. Firstly, the macroscopic
structures emerging from a designed recipe may be quite
different from the target patten intended when it was designed
(shown in Fig. 2; this was especially true for the “walker-
follower” example). This was because the number of available
particles and spatial dimensions were much larger in these
experiments. Secondly, the time scale of the initial growth
and replication of those macroscopic structures may strongly
depend on the nature of the recipe. The “rotary” example
showed a very rapid proliferation of cellular structures over
the space, while the “walker-follower” one showed a very slow
growth process. This observation assures that different recipes
(=genotypes) can cause different ecological properties of the
resulting macroscopic structures (=phenotypes) in the Swarm
Chemistry world.

189



Initial condition: random

Initial condition: designed (“swinger”)

faster slower behind faster slower behind
majority majority majority majority majority majority
(probabilistic) (relative) (probabilistic) (relative)
recipe length recipe length recipe length recipe length recipe length recipe length
then majority X majority then majority X majority

Fig. 4. Results of Exp. 2: Comparison between several different competition functions. The nine cases on the left hand side started with random initial
conditions, while the other nine on the right hand side started with designed initial conditions with the “swinger” recipe. Snapshots were taken at time =

20000 for all cases.
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designed
(“swinger”)

designed
(‘6r0tary77)
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Fig. 5. Results of Exp. 3: Sample simulation runs with designed initial conditions using different recipes. All cases used the majority (relative) competition

function. Snapshots were taken at logarithmic time intervals.
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The experiments described above suggested the potential
of Swarm Chemistry for producing more creative, continuous
evolutionary processes, yet the results obtained up to this point
were not quite satisfactory. Therefore two additional factors
were examined in the following experiments in order to further
promote continuous evolutionary changes.

D. Exp. 4: Increasing Mutation Rates

The first factor to be manipulated was the mutation rate.
All of the above experiments showed the high robustness of
macroscopic structures against mutations when a majority-
based competition function was used. Therefore simulations
were conducted with increased mutation rates that were 10
times (medium) or 100 times (high) greater than those in the
original experiment. The probability of addition of a random
kinetic parameter set in a single mutation event was also
increased from 10% to 50% per event.

Results are shown in Fig. 6, where some major evolutionary
changes emerged, e.g., in the “rotary” cases with both muta-
tion rates and the random and “walker-follower” cases with
high mutation rates. In these simulation runs, the dominant
structures changed over time, which was not seen in earlier
experiments (Figs. 4 and 5). The evolutionary changes halted,
however, when most of the particles were absorbed in evolved
dominant macroscopic structures. This may be understood in
that the swarms were stagnated at a local optimum in the recipe
possibility space after a relatively short period of adaptation.
In the meantime, it was intriguing to see different levels of
mutation tolerance among different recipes. The “swinger”
recipe turned out to be tolerant to high volumes of mutations,
while the “rotary” one was quite fragile.

E. Exp. 5: Introducing Exogenous Perturbations

The second factor considered was the exogenous perturba-
tion in order to create a dynamically changing environment.
Our earlier work on evolutionary cellular automata demon-
strated that such dynamic environments may make evolution-
ary dynamics of a system more variation-driven, promoting
long-term evolutionary changes [8], [9]. This experiment was
to implement similar mechanisms in Swarm Chemistry. The
following two exogenous perturbations were considered in the
form of temporal variations of competition functions:

e perturbation I: The competition function was switched to
either “faster” or “slower” temporarily for 50 time steps
in every 5000 time steps. The choice of the competition
function was randomly determined at the beginning of
each perturbation period.

e perturbation II: The competition function was switched
to either “faster” or “slower” temporarily for 50 time
steps in every 2000 time steps only inside either left or
right half of the space. The choices of the competition
function and the spatial area to be affected were randomly
determined at the beginning of each perturbation period.

With these exogenous perturbations, some simulation runs
finally demonstrated continuous changes of dominant macro-
scopic structures over a long period of time. Figure 7 presents

two examples of such processes. A fundamental difference
between this and earlier experiments was that the perturbation
introduced to the environment could break the “status quo”
established in the swarm population, often making room for
further evolutionary innovation to take place. It appeared that
the perturbation II was slightly more effective in promoting
evolutionary changes and maintaining diversity within the
system due to the spatially heterogeneous nature of pertur-
bations, though no statistical data is available to validate
this speculation at this point. It should also be noted that
such continuous evolutionary changes did not occur always;
they were observed only in two out of four simulation runs
conducted in this experiment so far. Nevertheless, these results
were unique and promising, suggesting a possibility of creating
a truly open-ended evolution in the Swarm Chemistry world
through further model revisions.

IV. DISCUSSIONS AND FUTURE WORK

In this paper, a series of simulation experiments were
presented to illustrate the recent progress in search for open-
ended evolution in the computational universe of Swarm
Chemistry. The key components of model revisions were the
local transmission of recipe information from active to passive
particles, as well as between two active particles, and the pos-
sibility of mutation and competition among different recipes.
These model assumptions realized the three key ingredients
of evolution—inheritance, variation and selection—all arising
from local processes occurring at microscopic levels. Yet our
simulation results successfully demonstrated that ecological
and evolutionary dynamics of macroscopic structures can
emerge in such systems.

This research is still work-in-progress, and there are a
number of problems that need to be addressed. The single most
crucial problem is the computational time and space needed to
simulate a large-scale swarm, especially with a majority-based
competition function that requires identification of local neigh-
bors and their types. In a typical simulation run, simulating
the system for one time step would take about 0.5 to 1 second
on a single workstation. A drastic speed-up of simulation is
of absolute necessity in order to conduct more systematic
investigation of this model in the future. The application
of General-Purpose Graphic Processing Units (GPGPUs) for
large-scale particle simulation is currently planned. This will
hopefully enable significant expansion of spatial as well as
temporal scales of simulation, which may by itself have a
huge impact on evolutionary dynamics of Swarm Chemistry.

The second major problem is the development of quantita-
tive observation/analysis tools to characterize the evolutionary
dynamics of Swarm Chemistry in a more systematic, objective
way. In this paper, the experimental observation relied largely
on visual inspection, but a more quantitative characterization
would be necessary in order to confirm that the observed
behavior is truly open-ended without falling into static or
cyclic evolutionary attractors. Some measurement techniques
are already available for this purpose [10], [11], [12], which
should be directly applicable to the Swarm Chemistry world if
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Fig. 6. Results of Exp. 4: Effects of increased mutation rates. The top four rows used medium mutation rates (p; = 102, Ps = 10_4), while the bottom

four used high mutation rates (p; = 10~ !, ps = 1073). See text for more details. All cases used the majority (relative) competition function. Snapshots
were taken at logarithmic time intervals.
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Case 1: Starting with random initial condition under perturbation I

Case 2: Starting with designed (“swinger”) initial conditi

on under perturbation I1

Fig. 7.

Results of Exp. 5: Long-term evolutionary behaviors seen in simulation runs under dynamic environmental conditions with high mutation rates and

the majority (relative) competition function. Snapshots were taken at constant time intervals (2500 steps) to show continuous evolutionary changes.

one measures the evolutionary activity at recipe (=genotype)
levels within a swarm population. However, it would be
more challenging to characterize the evolutionary activity at
macroscopic structure (=phenotype) levels observed in Swarm
Chemistry. It is expected that different approaches that utilize
image processing, topological analysis, and/or information the-
oretic/entropic methods would be necessary for automating the
observation tasks, including automatic detection and dynamic
tracking of macroscopic coherent structures and their motions.

One relatively minor technical issue that should also be
noted is in the collision detection algorithm in Swarm Chem-
istry. In its current implementation, collision detection depends
on perception ranges of particles; if a perception range of a
particle is close to zero, its recipe will be hardly overwrit-
ten by other recipes, and therefore, the near-zero perception
range works as a genotypic attractor under the current model
assumptions. This issue must have affected substantially the
simulation results presented in this paper, which will be
corrected in future experiments.

Some of the presented simulation results can be watched
online at http://youtube.com/complexsystem.
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