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Abstract

It is generally believed that self-replication models con-
structed on cellular automata have quite limited evolutionary
dynamics in both diversity and adaptative behavior. Contrary
to this view, we show that complex genetic diversification and
adaptation processes may occur in self-replicating loop popu-
lations. Applying newly developed tools for detailed genetic
identification and genealogy tracing to evoloop populations,
we uncovered a genotypic permutation space that expands
combinatorially with replicator size. Within this space popu-
lations demonstrate broad behavioral diversity and non-trivial
genetic adaptation, maximizing colony density while enhanc-
ing sustainability against other species. We also found a set of
non-mutable subsequences enabling genetic operations that
alter fitness differentials and promote long-term evolutionary
exploration. These results reveal the amazing potential of cel-
lular automata to re-create complex genetic evolution of self-
replicators in a simple, deterministic framework.

Introduction
Since von Neumann’s seminal work on self-reproducing
automata (von Neumann 1966), models of artificial self-
replicators based on cellular automata (CA) have formed one
of the mainstreams in Artificial Life (Langton 1984; Reg-
gia et al. 1993; Sipper 1998). Recent developments indi-
cate that simple CA systems can reproduce natural selec-
tion processes occuring on different self-replicating struc-
tures (Sayama 1999). Their evolutionary dynamics, how-
ever, are generally believed to be quite limited in both di-
versity and adaptative behavior (Sayama 1999; McMullin
2000; Suzuki et al. 2003). Previous results point to a seem-
ingly well-defined fitness landscape in which optimization
converges to a single global maximum: homogeneous pop-
ulations dominated by a single species of the smallest size
and shortest replication time.

Contrary to these earlier observations, here we show that
complex genetic diversification and adaptation processes
may occur in such simple CA. We investigate a system of
evolving self-replicating loops (evoloops) (Sayama 1999)
in which replication, variation and natural selection emerge
solely from local rules. Applying newly developed tools ca-
pable of sophisticated genetic identification and genealogy
tracing to evoloop populations (Salzberg 2003; Salzberg, in

press), we uncovered a genotypic permutation space that ex-
pands combinatorially with replicator size. Within this space
populations demonstrate broad behavioral diversity and non-
trivial genetic adaptation, maximizing colony density while
enhancing sustainability in the presence of other competing
species. Such adaptation was observed even within species
of the same size, thought to be of equal fitness in previ-
ous treatment. Intriguing genetic features were also found
that may parallel issues in molecular genetics, including
the discovery of non-mutable subsequences enabling genetic
operations that alter relative fitness differentials. Simula-
tions with such “genetically modified organisms” demon-
strate continuously changing, long-lasting evolutionary be-
havior. These results reveal the amazing potential of CA to
re-create complex genetic evolution of self-replicators in a
simple, deterministic framework.

Model
The evoloop (Sayama 1999) we investigate is a determinis-
tic nine-state 2D CA model with von Neumann neighbor-
hoods, designed after Langton’s self-replicating loop (Lang-
ton 1984). An evoloop individual contains an identifiable
modular structure describing the shape of offspring (geno-
type) and an external structure of its own body (phenotype).
The former is a sequence of moving signal states (genes)
and the latter is a looped sheath of square or rectangular
shape, with an arm thrust outward [Fig. 1(a)]. A viable gene
sequence contains several ‘7’ states for straight growth of
the arm and a pair of consecutive ‘4’ states to control left
turning of the arm. In a process of self-replication, cyclic
propagation of signal states coordinates the external arm to
create a new structural entity. The growing arm is guided
through three successive turns and eventually meets its own
root, causing tip and root to bond together to form a new,
separate loop [Fig. 1(b)]. The truncated arm then retracts,
completing the self-replication process.

Loops are destroyed by the appearance and propagation
of the dissolver state ‘8’ through contiguous loop structures.
Triggered by local configurations non-integral to the normal
self-replication cycle, this process of structural dissolution
typically arises from shortage of space due to overcrowd-
ing and exhibits highly complex dynamics. Its spread is af-
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Figure 1: (a) An evoloop individual. (b) Self-replication of an evoloop. Gene sequence is utilized five times during replication, first to
construct the umbilical cord (omitted in the figure) and four times to construct the offspring loop. Following loop closure, the truncated arm
retracts towards the parent loop and both loops commence the next replication cycle. (c) Labeling scheme of gene sequence of an evoloop.
Starting from the bonding location, the mapping transforms ‘071’ triplets to G’s, ‘041’ triplets to T’s, and ‘0’ states to C’s.

fected by minor variations in gene sequence permutation and
spacing, often producing leftover sheath cells that form a
static, reactive environment. Collisions of loop sheath struc-
tures during replication often lead to a change in the gene
sequence of offspring. Resting solely on the local interac-
tions of states on a CA grid, such “mutation” events result in
an emergent process of variation and natural selection that
collectively shapes the path of evolution.

This distinctly bottom-up feature of the evoloop system
distinguishes it from other well-studied artificial evolution-
ary systems of computer programs (Yedid and Bell 2002;
Lenski et al. 2003); in these systems a central system man-
ager tracks living organisms and applies probabilistic mu-
tations to their genomes so that explicit control is partially
possible. In contrast, the evoloop system supplies no uni-
versal structural cues; everything down to the separation
between replicator and its environment has to be specified
by the system observer. The challenge of analyzing such a
potentially “messy” system — coupled with the belief that
its evolution always converges homogeneous populations of
smallest-sized, fastest-replicating species — has left the de-
tail of its dynamics practically untouched to date.

Methods
We attempt a complete analysis by structurally identify-
ing every birth and death event at the highest level of de-
tail (Salzberg 2003; Salzberg, in press). Unique local con-
figurations are used as markers for detecting such events: the
appearance of an umbilical cord dissolver (state ‘6’) for birth
detection and the disappearance of an inner sheath (state ‘2’)
for death detection. The detection mechanism was embed-
ded in simulator software as an event-driven function requir-
ing almost no additional computational overhead.

At birth, the detection mechanism extracts information
about evolutionary identity of the newborn loop, i.e. a geno-
type corresponding to the configuration of genes in its gene
sequence traced counter-clockwise starting at the location of

the umbilical cord dissolver [Fig. 1(b)] and a phenotype de-
scribing the size (length and width) of its sheath structure. A
pair of genotype and phenotype describes a species. To write
a gene sequence, we represent a triplet ‘071’ that describes
a gene for straight growth by G, a triplet ‘041’ that describes
a gene for left turning by T, and a single core state ‘1’ that
fills in the sheath by C. For example, the gene sequence of
the newborn in Fig. 1(b) is written as GGGGCCCCTTGG
[Fig. 1(c)].

Each different species observed during a run is assigned
a unique integer label. As a run progresses, a database is
compiled containing the mapping between species labels
and their evolutionary identities (gene sequence and loop
size). Each newborn loop appearing in the CA space is first
checked with all the species registered in the database; if its
identity is not matched, it is assigned a new label and added
to the database. Then we record each such birth event with
the labels of both parent and offspring with a time stamp in-
dicating the moment of loop closure. From this level of de-
tail, entire genealogical histories may be reconstructed and
every evolutionary transition precisely pinpointed. This new
analysis scheme has enabled us to discover a richness of evo-
lutionary phenomena in the evoloop system that were largely
overlooked in earlier studies.

Results
Genetic and behavioral diversity

In the birth event records compiled during our simulation
runs, self-replicating species have the same labels for both
parent and offspring and are hence easily identified. We col-
lected gene sequences of all self-replicating species and dis-
covered, to our surprise, a far larger and more diverse set
than expected beforehand. From this set we extracted the
following constraints imposed to the sequences for success-
ful replication: (1) the sequence must include the same num-
ber of G’s as the size of its phenotype, (2) the sequence must



Size Number of species Size Number of species
4 15 12 646,646
5 56 13 2,496,144
6 210 14 9,657,700
7 792 15 37,442,160
8 3,003 16 145,422,675
9 11,440 17 565,722,720

10 43,758 18 2,203,961,430
11 167,960 19 8,597,496,600

Table 1: Number of different self-replicating loop species for a
given loop size. We estimate this number by calculating the number
of possible gene arrangements in a fixed-length sequence within the
constraints for self-replication described in text. For a loop of size
n, this estimate amounts to2n−2Cn−2 different species (Salzberg
2003). Loops of size 3 or less cannot self-replicate as there is in-
sufficient space in their genome to fit the required G and T genes.

include a pair of T’s, (3) the two T’s must have no interven-
ing G between them, and (4) the trailing T must be immedi-
ately followed by G. Within these constraints, permutation
of G’s, T’s and C’s amounts to a set of viable genotypes
whose number grows combinatorially with loop size. We an-
alytically derived an estimate of this number to be2n−2Cn−2
wheren is the loop size (Salzberg 2003), listed in Table 1 for
sizes from 4 to 19. By size 18, this figure already amounts to
over two billion different viable self-replicators. Such huge
genetic diversity has been totally ignored in the earlier clas-
sification based on loop size only.

Each genotype in this large possibility space may have
quite different behavioral patterns. We carried out exhaus-
tive simulation runs up to size-9 loops to make sure that
all the permutated genotypes counted in the above estimate
are actually self-replicating. Figures 2 and 3 show the re-
sults for size-4 and size-6 loops, demonstrating a striking
behavioral diversity within the same-sized loops that were
considered as a single species in earlier treatment. Note
that these patterns — though seen at larger scales than in-
dividual loop bodies — are solely dictated by their gene se-
quences through their non-trivial interactions via transition
rules, and thus should be considered as an “extended phe-
notype” (Dawkins 1990) of each species that can also be
subject to natural selection.

Genetic adaptation
The rapid convergence toward smallest self-replicators,
quite commonly found in artificial evolutionary models in-
cluding evoloops (Sayama 1999; Yedid and Bell 2002), tells
that the replication time is clearly one of the key quanti-
ties being optimized through evolution. However, the huge
genotypic permutation space presented in the previous sec-
tion implies that there may be more room for fine tuning in
genetic adaptation, even among the same-sized loops that
basically share the same replication time. Whether such mi-
croevolution occurs in the evoloop system has remained un-
resolved to date. To answer this question, we focus on two
characteristic quantities for each species and evaluate how
they evolve in actual simulation runs.

The first quantity we choose is the sustainability of each
species in the presence of other competing species. We char-
acterize this by a relative population ratio of that species
after a given period of time in competition with another
species, each of which starts from one ancestor. If the given
time period is not too long, this ratio captures a shapshot of
the population composition under gradual dominance by one
over the other, which quantitatively indicates the competitive
strength and evolutionary stability of the species against the
competitor. Computing an average of such ratios with all the
possible competitors would give a meansurvival rateof that
species in the melee of various other species in the “wild”.
To actually compute this rate, however, one has to restrict
the competitor candidates in a practical number. We thus
limit ourselves to size-4 species only, assuming that their
possible competitors are also of size 4 due to the natural se-
lection favoring shortest replication time. We carried out a
round robin among all the fifteen size-4 species and used
the results to obtain the mean survival rate for each species,
which is shown in Fig. 4. It is clearly seen that there are sig-
nificant differences of sustainability within the same-sized
species, even of the smallest size-4 ones. We note that two
species (1 and 15) show particularly low sustainability due
to their evolutionary instability; they quickly evolved into
other species in most cases.

The second quantity being measured is the colony density
of each species. We characterize this by a quadratic coef-
ficient of a parabola1 fitted by the least-squares method to
the population growth curve of that species in an infinite do-
main. Specifically, we fit a parabolap(t) = at2 + bt + 1 to
the population curve and useda as a characteristic quantity
of colony growth, which we callcolony density index. This
quantity can be easily measured and defined to each species
for its own. It depends, however, on the choice of time range
of data point sampling for fitting from the population growth
curve. We have tested 0–1500, 0–2000, 0–3000 and 0–5000
updates for the sampling time range. The results with 0–
2000 are shown in Fig. 5, reflecting a diversity of growth
patterns illustrated in Fig. 2.

These two quantities are found to positively correlate with
each other (Fig. 6). Their correlation coefficient varies with
different time ranges used for the measurement of colony
density index (0.420 with time range 0–1500, 0.674 with 0–
2000, 0.423 with 0–3000, and 0.274 with 0–5000) and is
highest when the range 0–2000 is chosen. This implies that
the sustainability of a population is determined by natural
selection acting at a time scale around 2000 updates in the
evoloop system. This can be understood in that time scales
shorter than this would produce no significant difference in
colony structure and time scales longer than this would not
be relevant for selection since such a large colony would
rarely appear in actual evolutionary processes.

Interestingly, the above two quantities both increase dur-
ing evolution of loopsin vivo. Figure 7 shows an exam-

1Note that a population of evoloops grow parabolically, not ex-
ponentially, due to the geometric constraint of the 2D space.



1: GGTTGGCC 2: GGTTGCGC 3: GGTCTGGC 4: GGCTTGGC 5: GCGTTGGC

6: GGTTGCCG 7: GGTCTGCG 8: GGCTTGCG 9: GCGTTGCG 10: GGTCCTGG

11: GGCTCTGG 12: GCGTCTGG 13: GGCCTTGG 14: GCGCTTGG 15: GCCGTTGG

Figure 2: Growth patterns of all the size-4 evoloop species capable of self-replication. The total number of such species is2×4−2C4−2 = 15.
Each snapshot is taken after 5000 updates starting from one ancestral loop. An integer label is attached to each species, which will be used in
the following figures.

Figure 3: Growth patterns of all the size-6 evoloop species capable of self-replication. The total number of such species is2×6−2C6−2 = 210.
Each snapshot is taken after 5000 updates starting from one ancestral loop. Empty areas indicate unsuccessful species that can self-replicate
just once in their lifetime so that there is always only one individual alive in the space. More results for different sized loops can be found at
http://complex.hc.uec.ac.jp/loops/.
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Figure 4: Mean survival rate of size-4 species obtained from the
results of the round robin among all the fifteen size-4 species. Rel-
ative population ratios are measured after 100000 updates in each
competition. The space used is of1000×1000grid with opponents
placed at opposite ends of the periodic space. We also ran another
set of experiments on a500×500grid, confirming these results.

�����

�����

	�
��


����

�����

�����

� � � � � � � �  !#" $%$ &(' )+* ,(- .0/
132547608947:

;=<
> <
? @
ACB
?DE F
@
E ?
ACB
GH
GIJ

K
LM

Figure 5: Colony density index of size-4 species. Sample data
points for parabola fitting are taken between 0 and 2000 updates at
intervals of 10 from the population growth curve of each species.

ple of such processes starting from a size-8 ancestral loop.
The evolutionary transition of dominant species in this run is
mapped onto Fig. 6; the population moves diagonally in the
plot to optimize both quantities. This result gives a clear-cut
answer to the question we posed above: thereis microevo-
lution taking place in the evoloop system, even among the
same-sized loops with the same replication time. Natural
selection not only favors short replication time but also in-
creases colony density of loops and enhances sustainability
against other species through non-trivial genetic adaptation.

Non-mutable subsequences

Moreover, from extensive simulation results, we recently
discovered empirically that any subsequence of the form
G{C}T{C}TG, where {C} represents any number of
C’s, will always survive mutations leading to other self-
replicating species. Such non-mutable subsequences are a
non-trivial outcome of dynamic properties of the evoloop’s
CA rules and have yet to be rigorously explained. Their ex-
istence implies that the genetic state space is partitioned into
distinct groups of self-replicating species, each possessing
the same conserved subsequence, between which no con-
necting evolutionary path exists. Each group enforces a min-
imum loop size for which exact self-replication is possible;
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Figure 6: Correlation between survival rate and colony density in-
dex plotted in Figs. 4 and 5, respectively. The dashed arrows repre-
sent the actual evolutionary transition of dominant species seen in
the experiment in Fig. 7.
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Figure 7: Example of evolution of loopsin vivo starting from
a size-8 ancestor with gene sequence GGCCGGCGCGTTGCGC.
Time axis is log-scaled since the selection becomes slow as time
proceeds. The transition of dominant species is mapped onto Fig. 6.
The space used is of1000×1000grid. The same experiments were
also performed on size800×800and1200×1200grids to verify
the robustness of the observed dynamics to boundary conditions.

shorter gene sequences cannot contain both the conserved
subsequence and the sufficient number of G genes required
for exact self-replication.

We use this property to configure “genetically modified
organisms”, species which cannot evolve below a given
minimum threshold size. Experimenting with this thresh-
old enabled us to reduce the size-based fitness differen-
tial normally leading to strong competitive exclusion. Fig-
ure 8 shows evolutionary dynamics starting from a size-15
“GMO” evoloop injected with the subsequence GCCCC-
CTCCCCCCCCTG, enforcing a minimum size of 15 on all
viable descendants. Although size-based fitness alone fa-
vors this minimal-sized species, the fitness differential in
this case is relatively weak and gives way to other, emergent
behavioral characteristics. As a result, the system fluctu-
ates between dominant species, demonstrating continuous,
long-lasting evolutionary behavior, covering over six mil-
lion iterations and ending with incidental extinction. The
progression of major species appearing in this exploration
process is shown in Fig. 9. Interestingly, this progression
seems to show the presence of some general pattern in the
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Figure 8: Evolutionary dynamics of “GMO” evoloops with subsequence GCCCCCTCCCCCCCCTG injected to set minimal viable loop size
to 15. The space used is of 401x401 grid. Of the total 7106 species observed during this run (including 58 different self-replicating species),
only exact self-replicators with populations exceeding 10 individuals are plotted. The same experiments were also performed on size 399x399
and 400x400 grids to verify the robustness of observed dynamics to boundary conditions.

genetic modification process. In this and other experiments,
C states are preferentially inserted between G genes along-
side the conserved subsequence, producing a general evo-
lutionary tendency towards larger species. This trend is at
least weakly reversible, as evidenced by the emergence of
certain species with added C states in the middle of their se-
quence (speciesn ando) and by the re-appearance of certain
smaller species (e.g. speciesd ande).

Conclusion
The complexity and diversity of CA dynamics has been
well known to many for long. Still, it is quite surpris-
ing, especially to researchers well-acquainted with the ca-
pabilities and practical limitations of CA, that a system
so simple can produce such genetic and behavioral diver-
sity of self-replicators and their complex genetic evolution
as an emergent property solely arising out of local tran-
sition rules. Our findings manifest the importance of de-
veloping sophisticated observation and interpretation tech-
niques to capture the full richness of evolutionary phenom-
ena emerging at multiple scales within the system, which
has long been underestimated compared to model construc-
tion in self-replication studies.
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