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Abstract

A new self-replicating cellular automata (CA) model is
proposed as a latest effort toward the realization of an
artificial evolutionary system on CA where structural
complexity of self-replicators can increase in some
cases. I utilize the idea of ‘shape encoding’ proposed
by Morita and Imai (Morita & Imai 1996b) and make
the state-transition rules of the model allow organ-
isms to transmit genetic information to others when
colliding against each other. Simulations with ran-
dom initial configuration demonstrate that it is possi-
ble that the average length of organisms and the aver-
age frequency of brancing per organism both increase,
with decreasing self-replication fidelity, and saturate
at some constant level. The saturation is caused in
part by the fixation of place and shape of organisms
onto particular sites. This implies the necessity of in-
troducing some fluidity of site arrangements into the
model for further development of evolutionary models
using CA-like artificial media.

Introduction

Research on self-replicating patterns on CA was
founded by von Neumann (von Neumann 1966) and
now is viewed as one of the origins of artificial life re-
search (Marchal 1998). A number of attempts to em-
body artificial organisms on CA have been conducted
so far in this area. They may be categorized into four
groups as follows!:

(1) Implementation of universal constructors based on
von Neumann'’s self-reproducing automaton, studied
in ’50s—"70s (von Neumann 1966; Codd 1968; Vitényi
1973; Pesavento 1995)

(2) Search for a minimal system capable of non-trivial
self-replication, studied in '80s—90s (Langton 1984;
Byl 1989; Reggia et al. 1993; Sipper 1994; Morita &
Imai 1996b)

'See also (Sayama 1998a, Chap.3) and (Sipper 1998).

(3) Addition of other computational capabilities to self-
replicators, studied in ’90s—present (Tempesti 1995;
Perrier, Sipper, & Zahnd 1996; Chou & Reggia 1998)

(4) Realization of emergence and evolution of self-
replicators, studied in ’90s—present (Lohn & Reg-
gia 1995; 1997; Chou & Reggia 1997; Sayama 1998a;
1998b; 2000)

(1), (2), and (3) are efforts to implement regulated
behavior (e.g. construction, self-replication, computa-
tion) manually designed according to the designer’s
idea, while (4) strives to obtain unexpected behavior
(e.g. emergence of self-replicators or evolution) that
may arise from robust or random state-transition rules.

In terms of category (4), the evolutionary pro-
cesses so far attained using CA were just a change
of the size of self-replicating loops, i.e. either increase
(Chou & Reggia 1997) or decrease (Sayama 1998a;
2000) in size of the loops. Whether the complexity-
increasing evolution of artificial organisms (the evolu-
tion of their ability to do more complicated things)
is attainable using CA is an open question originally
posed by von Neumann at the beginning of this area
(von Neumann 1966; Marchal 1998), which still has
been unsolved. One of the reasons for this is that the
idea of Langton’s self-replicating loop (Langton 1984)
that has formed the basis for many succeeding stud-
ies requires a simple, square (or rectangular) shape of
organisms to enable their replication. To remove this
restriction, it is necessary to employ a model much
more flexible in terms of the shape of self-replicating
organisms.

The work introduced in this article extends this ef-
fort to realize a new CA model where complexity of
virtual organisms can increase along time. I mainly
focus on the possibility of increase in structural com-
plexity of artificial organisms, based on the assump-
tion that any other aspects of complexity such as the
function of artificial organisms should stem from their
structure. To construct a new CA model, I employ the



shape-encoding mechanism proposed by Morita and
Imai (Morita & Imai 1996b) that makes a variety of
patterns capable of self-replication. I then make the
state-transition rules of the model allow organisms to
transmit genetic information to others when colliding
against each other, which may give rise to their varia-
tion.

In the following sections I introduce the design of
the new model and demonstrate through simulations
that the average length and the average frequency of
brancing per organism can both increase in this model.
Such processes take place with the decrease of self-
replication fidelity due to overcrowding, and always
saturate at some constant level. It is suggested that
such saturation is caused in part by the fixation of
place and shape of patterns onto particular sites, which
is an intrinsic limitation of CA that prevents us from
creating open-ended evolution there.

Model

The shape-encoding mechanism

The main property to be added to the CA-based
self-replication model is the variety in shape of self-
replicators. For this purpose, I utilize the shape-
encoding mechanism proposed by Morita and Imai
(Morita & Imai 1996b), which is a mechanism to let
an organism dynamically generate genetic codes from
its own phenotypical pattern by self-inspection (Laing
1977). An example of their self-replicating automata
is shown in Fig. 1. This worm performs a unique form
of self-replication, in which its shape is continuously
being encoded into genotype at its tail, and these en-
coded genes are conveyed to the head and decoded
there for construction of its offspring. This is different
from other prevalent systems in which genetic informa-
tion is described in a static form and information flows
only from genotype to phenotype.

With the shape-encoding mechanism, a great variety
of patterns can self-replicate, which is quite useful for
the goals of this study. Since Morita and Imai did
not consider collisions among organisms, however, it is
necessary to incorporate the state-transition rules for
such situations.

Space

The proposed model uses a two-dimensional discrete
space, where a virtual organism is represented as a con-
tiguous region composed of mutually connected ‘struc-
ture cells2.” A structure cell is a square that has one

2Note that the word ‘cell’ is used here for a particular
state as a part of a virtual organism represented on the CA
space, while ‘site’ is used for a substrate unit that composes
the space itself.

Figure 1: A self-replicating worm with the shape-
encoding mechanism by Morita and Imai (from
(Morita & Imai 1996b) by courtesy of the original au-
thors).

input port and three output interfaces on its edge, and
also three internal 1-bit registers inside itself, as shown
in Fig. 2. The internal registers hold information about
the existence of Central, Left, and Right genes that se-
quentially describe how the shape of that organism is
formed. They are continuously being updated to have
new values coming from the input port, while the old
values they previously had are sent out through the
output interfaces. The values of internal registers are
conveyed successfully if and only if the cell’s input port
is correctly rooted to one of the output interfaces of an-
other adjacent structure cell. In addition, each entire
cell takes either active or passive mode. A passive cell
simply conveys genetic information, while an active cell
plays more important roles in growth and dissolution
of the structure patterns.

The above-mentioned cell property is implemented
using sixty-five-state CA with von Neumann neighbor-
hood (five-site neighborhood), where the state each site
will take after one update is determined locally accord-
ing to the states it and its four adjacent sites (upper,
lower, right, and left neighbors) have at present. The
design of states used here is shown in Fig. 3. The states
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Figure 2: Schematic illustration of a structure cell in
the new model. It has one input port, three output
interfaces, and three internal 1-bit registers that hold
information about the existence of Central, Left, and
Right genes. The entire cell takes either active or pas-
sive mode.

consist of one quiescent state and sixty-four structure
states. The latter are composed of three parts: Mode
field (1 bit), Link field (2 bits) and Gene field (3 bits).
This implementation is based on the idea of ‘multi-
data-field CA’ (Chou & Reggia 1997) (also known as
‘partitioned CA’ (Morita & Imai 1996a)) in which the
bits that constitute one state are divided into some
fields and treated separately. The Mode field stores
the cell’s current mode, the Link field does its direc-
tion, and the Gene field does the values of its internal
registers, respectively.

State-transition rules

The state-transition rules used in this model are de-
fined similarly to those of the original model by Morita
and Imai, except for modifications made so as to keep
the organisms working even in a situation of collision.
These rules can be described in words as follows?:

e For quiescent state:

— If stimulated by one of the adjacent active struc-
ture cells, it will turn into a blank structure cell
rooted to the stimulating cell.

— Otherwise it will remain quiescent.

3Contact me (sayama@necsi.org) for the complete rule
set.

Structure (64 states, represented by 6 bits)

- Mode field (1 bit)
Active or Passive

State { L Link field (2 bits)
Top, Bottom, Right or Left

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr Gene field (3 bits)

Gene C on/off
Gene R on/off
Gene L on/off

Quiescent (1 state)

Figure 3: Design of states in the new model.

e For structure states:

— Passive:

x If rooted to another structure cell, it will copy
that cell’s internal register values into its own,
then become active if it received at least one gene
and if there is no cell rooted to itself, i.e. it is the
head of a pattern.

x If not rooted to any structure cell, i.e. it is the tail
of a pattern, it will encode which output interface
is linked to other cells into its internal registers
and become active.

x In either case of the above two, if stimulated by
one or more of the adjacent active structure cells,
it will superimpose these cells’ internal register
values onto its own, using a logical ‘OR’ opera-
tion.

— Active:

* If rooted to another structure cell and there is no
cell rooted to itself, i.e. it is the head of a pattern,
it will become passive and copy the root cell’s
internal register values into its own. Then, if
stimulated by one or more of the adjacent active
structure cells, it will superimpose these cells’ in-
ternal register values onto its own, using a logical
‘OR’ operation.

* Otherwise it will become quiescent.

In the above description, ‘rooted’ means that the cell’s
input port is correctly linked to one of the output inter-
faces of another structure cell, and ‘stimulated’” means
that there is an adjacent active structure cell that at-
tempts to make a new structure cell onto that site ac-
cording to direction by genes.

Note that there is no special rule provided here
for cutting off the construction arm of self-replicating
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Figure 4: Shape encoding process at the tail of a pattern. The lowermost cell that has no root becomes active
(indicated by gray in figures) and encodes which output interface is linked to other cells into its internal registers
(t = 1). This active cell disappears while the encoded gene is conveyed upperward at the next time (¢ = 2). Such

a process takes place repeatedly (¢t = 3,4).
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Figure 5: Shape decoding process at the head of a pattern. The uppermost cell to which no cell is rooted becomes
active at the arrival of genes (¢t = 1). This active cell stimulates its adjacent quiescent sites to let them turn into
blank structure cells according to direction by the genes (¢ = 2). Such a process takes place repeatedly (t = 3,4).

loops that were often added to state-transition rules
in earlier models. Since the primary motivation of
this study is to extend the flexibility in shape of self-
replicators, eliminating the constraint of loop struc-
tures is essential.

Behavior
Microlevel behavior

The shape-encoding/decoding behavior under the rules
defined above are shown in Fig. 4 and 5. Shape encod-
ing or decoding takes place in a cell which momentar-
ily becomes active and determines the appearance of
newly growing structure cells or its own disappearance.

The most interesting innovation introduced by this
model, compared to earlier models, is that collisions
of organisms lead to gene transmission beyond their
boundaries, instead of irregular behavior or structural

dissolution. This process is depicted in Fig. 6. Such in-
teraction of phenotype, which directly affects the geno-
type, is not found for sophisticated life forms such as
eukaryotic organisms including human beings. Con-
cerning the beginning of life, however, it may have been
an important source of variation in driving evolution
of primitive life forms born with so small complexity
that there was no distinct line between genotype and
phenotype.

Self-replication

A variety of patterns can replicate themselves in the
proposed model due to the shape-encoding mechanism.
One of the simplest self-replicating organisms in this
model is shown in Fig. 7. It occupies only two sites in
the space. It is remarkable that even such small organ-
isms self-replicate through the interaction of genotype
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Figure 6: Gene transmission process occuring when a pattern collide into another. The central cell becomes active
at the arrival of a gene (¢t = 1). However, the place onto which it wants to create a new structure cell is occupied
by another existing pattern. Then the gene coming from the right pattern is transmitted beyond the boundary of
two patterns and superimposed onto the left pattern’s gene information using a logical ‘OR’ operation (¢ = 2).

and phenotype, involving transcription and translation
of genes. Thus this process is non-trivial according to
Langton’s classification (Langton 1984). Other exam-
ples of small self-replicators are shown in Fig. 8.

Macrolevel behavior

This model displays interesting evolutionary behavior
at macro level. Simulations were conducted with ini-
tial configuration in which blank structure cells were
randomly distributed at some specified density. All
the results shown in this section are obtained using a
square space of 200 x 200 sites with cutoff boundary
conditions applied to its edges.

The typical outline of macrolevel behavior in this
model is the following: (1) At first there is a short tran-
sient period when most of ‘junk’ patterns contained in
the initial configuration are screened out of the space.
(2) If some self-replicating organisms survive the initial
transient period without being extinct, they begin to
generate their respective colonies. (3) When the grow-
ing colonies crash against each other (or against sterile
patterns remaining), in some cases one of the compet-
ing clusters absorbs the other; in other cases the crash
happens to generate a new kind of cluster and it over-
comes its ‘parent’ clusters. (4) Eventually, the space
falls into one of the following types of final states:

Type I Static or periodic state with no self-replicator.

Type II Dynamic state in which the space is filled
like a mosaic with clusters each of which is made of
self-replicators of the same kind.

Type III Dynamic state in which the space is filled
with a dense cloud made of a jumble of complicated
self-replicators with low self-replication fidelity.

Type IV Static (or almost static) state in which the
space is filled with infinitely growing static webs that
originated in looped patterns included in the initial
configuration.

Examples of these four final states are shown in Fig. 9.
Which type the system finally falls into is dependent
on the number and the kind of self-replicating patterns
that survive the initial transient period. In general,
larger space and higher initial density of structure cells
make the initial population more diverse, which leads
to the greater probability of the appearance of type I11
or IV final state. How the final states depend on initial
density of structure cells is roughly shown in Fig. 10.

The most interesting behavior is the process of evo-
lution toward the type III final state, which is princi-
pal behavior of this model for a regime with the initial
density between 0.15 and 0.3. Fig. 11 shows a typical
example. In this case, at first two colonies of sim-
ple self-replicators are formed after initial screening
period (¢ = 0-108). The collisions among them and
other sterile patterns give rise to appearance of some
other self-replicators (¢t = 330). Once a dense cloud of
more complicated self-replicators is formed (¢ = 500),
it gradually proliferates (¢ = 760-1000) and finally fills
up all the space (¢ = 1500-2000). This process looks
like an evolutionary process in real biology performed
by variation and natural selection. However, we should
note that, since the organisms in this model change
their genotype or phenotype through direct interaction
very frequently, it is no longer possible to trace their
lineages and consider their reproduction/selection dy-
namics to be the same as that in real biology.
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Figure 7: One of the simplest self-replicating organisms. This worm travels straight and emits its offspring to the
left side repeatedly. The lower figure is a growing colony of them.
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Figure 9: Four types of the final states of evolution. For simplicity, only the direction of structure cells is plotted.
In the initial configurations are randomly directed structure cells set onto 10% of all the sites for type I, II, III, and
30% for type IV. Type I: At ¢t = 200 with random number seed 1234. Type II: At ¢ = 1500 with random number
seed 4321. Type III: At t = 2000 with random number seed 12345. Type IV: At ¢ = 1000 with random number
seed 1234. (With these seed numbers you can simulate them again using a Java applet intoduced at the end of this

article.)
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Figure 10: Dependence of final states upon initial den-
sity of structure cells. Ten simulation results are shown
for each initial density. The space is of 200 x 200 sites.

Increase of structural complexity

In the evolution toward the type III final state, a kind
of increase of structural complexity is observed. Tem-
poral development of structural complexity of the or-
ganisms in Fig. 11 is characterized in Fig. 12 using the
average of length of organisms, the average frequency
of branching per organism, and the average number of
genes per organism. These graphs show that all the
measured quantities are increasing after the appear-
ance of the dense cloud of complicated worms around
t = 500. The emergence and fixation of more com-
plicated worms implies that this model has a nature
to favor those with such complicated shape to some
extent.

However, such increase of complexity always satu-
rates at some constant level, i.e. the evolution in this
model is definitely restricted. Fig. 13 shows an exam-
ple of such a saturated situation taken from the final
state in Fig. 11. It is observed in this figure that each
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Figure 11: Evolution of worms from random initial configuration with 10% sites of structure cells. For simplicity,
only the direction of structure cells is plotted. The random number seed used is 12345.
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Figure 12: Evolution of structural complexity characterized by the average length of organisms (upper right), the
average frequency of branching per organism (lower left), and the average number of genes per organism (lower

right) in the case shown in Fig. 11.

organism has many gene information accumulated but
most of them are lost without being translated to phe-
notype. The self-replication fidelity is thus diminishing
there due to overcrowding, where the shape of offspring
is determined more significantly by the environmental
constraints, i.e. the availability of room around the or-
ganism for its growth.

One of the possible reasons for this saturation is
the shortage of local room necessary for full transla-
tion from genotype to phenotype due to the fixation
of place and shape of organisms onto particular sites.
We find in Fig. 13 that there are still some areas of
unused sites left near the crowded organisms. They
cannot make use of such empty areas in their vicinity
because their location and shape are strictly fixed to
particular sites, which is one of the intrinsic features
of CA. In contrast, biochemical polymers in real cells
such as DNA can move and change shape adaptively
reacting upon external forces, which enables many ri-
bosomes simultaneously translate genetic information
into proteins in a very compact local area. To real-

ize open-ended evolution on CA-like artificial media, it
would be necessary to develop and use a newer model
of space that has some fluidity in terms of place and
shape of virtual organisms.

Conclusion

In this article, I introduced a new self-replication model
with shape-encoding mechanism on a sixty-five-state
CA space with von Neumann neighborhood, where vir-
tual organisms transmit genetic information over their
boundaries through collisions of phenotypes. An inter-
esting result was obtained from simulations that there
were some cases where the structural complexity of or-
ganisms characterized by the average length of organ-
isms and the average frequency of branching per or-
ganism increased as the population evolved. However,
an unlimited increase of structural complexity could
not occur in this model. This limitation should be
caused in part by an intrinsic problem of CA that the
location and the shape of virtual organisms are strictly
stuck to particular sites so that there is no local room
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to allow further complicated structures to evolve. It
would be necessary to introduce some fluidity of site
arrangements into the model for further development
of artificial evolutionary models using CA-like space.
For the readers who may want to see the dynamic
behavior of the worms introduced, a Java applet for
simulating them was developed and is available at
http://necsi.org/postdocs/sayama/worms/.
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